Woodlands.co.uk

Blog - January 2023

The ongoing effects of ash dieback.

The ongoing effects of ash dieback.

by The blog at woodlands.co.uk, 27 January, 2023, 0 comments

Various Wildlife Trusts are experiencing financial problems as a result of Ash Dieback.  Dead and dying trees are to be found in woodlands up and down the country, (some of which are managed by local Wildlife Trusts).    The fungus has its origins in Asia and has spread across Europe for the last thirty years. It was seen in Denmark in 2002, and has spread across the country by 2005.  It  is now to be found in  Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, The Netherlands, Norway, Poland, Slovenia, Sweden and Switzerland. It probably arrived here on imported (and infected) plants, though its spores are easily spread on the wind.  Once infected, the fungus affects the movement of water, minerals and sugars as the vascular system (xylem and associated tissues) is impacted.  Once a tree has been infected with the fungus, it may then be colonised by another pathogen such as the honey fungus (Armillaria spp).  Symptoms of ash dieback may include Shoot tips become black and shrivel, side shoots on young trees may die. Dead and ‘black’ leaves can be seen, their veins and stalks of turned brown.  Leaves shed early. Branches begin to dieback Diamond-shaped dark lesions form on the trunk near to dead side shoots.  In late summer, small white fruiting bodies can be found on blackened leaf stalks (see Jasper’s detailed blog). [caption id="attachment_39049" align="aligncenter" width="600"] the fungus emerging from blackened dead ash petiole.[/caption]   The dead and decaying trees pose a threat (as they become weakened and brittle), and need to be removed.  Removal is an expensive process and takes money from the Wildlife Trusts that would otherwise be used for habitat restoration, new planting etc. Apart from affecting the beauty of our woodlands and hedgerows, the loss of these trees has ‘knock on’ effects for other species.  Brown eared bats and barbastelle bats are known to nest in ash trees, the trees also provide perches and nest sites for birds and act as a substrate for epiphytes such as lichens and mosses.  The loss of ash tree will also affect the plants beneath, plants that like damp shady conditions such as lady fern (Athyrium filix-femina) and dog’s mercury; these may be replaced by light loving species / grasses. Featured image : Ash in winter Detailed information of Ash Dieback : https://cdn.forestresearch.gov.uk/2017/06/fcrn029.pdf [note this link downloads a PDF].  
Woodlands web updates 21

Woodlands web updates 21

by The blog at woodlands.co.uk, 19 January, 2023, 0 comments

Ancient Trees A recent report has emphasised the importance of protecting and preserving ancient trees.  Ancient (veteran) oaks can live in excess of a thousand years, as can Yews.  The Bristlecones of California and Nevada may live for some five thousand years ! Such trees represent a massive carbon store; the carbon dioxide from the atmosphere being locked away for a millennium or five!  Not only are such trees a significant carbon store but they also offer a home or food for many other species - fungi, epiphytes such lichens & mosses, plus larval and adult stages of insects, birds and mammals.  As such they localised centres of diversity that contribute to ecosystem stability.  Not only are these trees ‘hotspots’ for species diversity but they are also centres of mycorrhizal activity and connectivity.  Mycorrhizae represent the symbiosis between fungi and plant. Plants ‘register’ wounding. When we are hurt, our nerves register the pain through the movement of sodium and potassium ions along the nerves.  When a plant is wounded, calcium ions are known to move in response, travelling from cell to cell, and leaf to leaf.  However, it is now known (through research at the John Innes Centre in Norwich) that this is not the first response of the plant to physical injury.  When cells are wounded they release glutamate, a form of glutamic acid.  This travels along the cell was and activates channels in the cell membranes that allow the movement of the calcium ions.   A bumblebee pathogen. One of parasites of bumblebees is Crithidia bombi.  It is a protozoan (single celled animal) that reproduces in the gut of the bumble bee. When infected with this parasite the foraging behaviour of the bee is impaired, as is its ability to learn.   A colony will suffer from increased worker mortality.  Now research has shown that floral structure may influence the transmission of this parasite from bee to bee.  The length and shape of the petals seems to be a critical factor.  If the bees ‘crawls’ in a ‘tube’ of petals, then it may leave behind some faeces.  If the bee is infected with the parasite, then it will be present in the faeces.  If the flower is then listed by another bee then it runs the risk of coming in contact with and being infected with the parasite.  Plants that have flowers with shorter petals / corollas are less likely to have faeces deposited within them, and therefore less likely to pass on the parasite to the visiting bumblebees.
Restoring peatland.

Restoring peatland.

by The blog at woodlands.co.uk, 12 January, 2023, 0 comments

In recent times, peatlands and areas of blanket bog have been recognised as important parts of our landscape.  Blanket bog is mostly found in wetter and more northern regions - in parts of Ireland and Scotland; in England a lot is to be found in Yorkshire.  Peatlands and bogs play an important part in controlling the run off of water from hillsides, plus they also represent an enormous store of ‘sequestered carbon’. The remains of plants (and animals) have been buried in wetlands but have not decomposed fully (usually due to the acidic conditions). Sometimes large chunks of trees are found in peat bogs, and occasionally even human remains (for example Tollund man) have been found.  Some of the peat deposits are incredibly thick and the material stored in them may be many thousands of years old.  Moorland ‘management’ techniques have been implicated in the severe erosion of certain areas, and the peat (that has accumulated over thousands of years) is being washed away. [caption id="attachment_32147" align="aligncenter" width="650"] Water logged conditions are ideal for peat formation[/caption] The UK has lost many areas of wetland habitat in recent times. A research team lead by Dr Swindles (Leeds University) examined many peatlands and looked at the changes that have occurred over the last two millennia.  They found that the majority of peatlands have become drier.  This drying out changes the role of a peatland from carbon sink to carbon source; i.e. releasing carbon into the atmosphere - contributing to global warming and climate change.  The streams and rivers that permeate these areas often turn a deep, rich brown as this organic material is washed out. [caption id="attachment_34388" align="aligncenter" width="650"] Stream flowing through peat moorland[/caption] Various efforts are being made to help stabilise these valuable ecosystems and a number of techniques to have been tried. At Fleet Moss, a North Yorkshire moor between Wharfedale and Wensleydale, the Yorkshire Peat Partnership project has been working to restore areas of degraded peatland by creating dams and reintroducing wildlife.  The conservationists have been using grass seed to try and stabilise the peat, hoping that as it grows and extends its roots, it will stop the peat from being washed away while allowing bog plants and sphagnum to flourish.  Sphagnum moss can hold 26 times its weight in water.   Their work is already bearing fruit,.  Originally, the land was largely acres of heather, with little variety in terms of the animals and plants that had made a home there. But over time, owls, frogs, foxes and weasels have appeared.  With time, the grass should stabilise the peat and allow bog plants to establish themselves. However, it has not been an easy process. Whilst the scattering of grass seed has worked in some areas, this does not always work everywhere, particularly on exposed sites; seeds can be battered by rain and wind.   Even at the height of summer, the weather on some of England’s highest terrain can be fierce, and scattering grass seeds on areas that are battered by wind and rain has proved to be problematic. So now in some areas a hydroseeder is being used where grass colonisation has failed. This is where green sludge and the bioengineering company TerrAffix come in. TerrAffix uses a hydroseeder to spray the mix of brash (chopped heather), grass seeds, fertiliser and a special adhesive (or tackifier), to areas facing particular challenges.  This equipment has been used to reseed prairies in the States, and can also be used on the steep slopes of motorways,   It will be some time before it is known whether this technique is successful in boggy and peatland areas.  If it does show signs of success then plugs of plants such as bog asphodel and sphagnum will be added, in the hope of recreating a more natural and diverse flora for the areas.   Further information on the restoration of peatlands can be found on Dr. Emma Shuttleworth's web pages and in articles such as this. Featured image is a 'book' made from bog oak.  
woodlice - nature's recyclers

woodlice – nature’s recyclers

by The blog at woodlands.co.uk, 6 January, 2023, 2 comments

The soil and the litter layer in a woodland is teeming with many different forms of animal life, particularly invertebrates that include many types of insects (beetles, springtails), arachnids, spiders and mites (arachnids), centipedes and millipedes (Myriapods), roundworms (Annelids) such as earthworms.  One group of animals that is often forgotten is the woodlice, they are terrestrial crustaceans belonging to the same group as crabs and lobsters.  Their ancestors were probably amongst the first animals to make the transition from sea to land  (millions of years ago). Indeed, they are still confined to a moist / damp environment as they breathe through ‘gill-like’ structures on their back legs (pleopods) and their body surfaces are susceptible to water loss. Consequently, they are usually found in damp, dark places, under rocks and in decaying logs / wood; they tend to be more active at night (which again reduces the risk of dehydration).  To protect their offspring, their fertilised eggs are placed inside a fluid filled pouch (carried between the female’s legs, and they are provided with water and nutrients).  The young go through a series of moults before reaching maturity. Woodlice are detritivores, feeding mostly on dead plant and animal matter in the soil and leaf litter.  Once, they have ingested and digested this material, what remains passes out of their bodies and micro-organisms will continue its breakdown (forming part of what is termed the detrital food chain).  They excrete ammonia through their exoskeleton, so they have a ‘distinctive smell’.  The ‘blood’ or haemolymph of crustaceans contains an oxygen carrying pigment that is blue when oxygenated.  It is based around a copper atom, our red haemoglobin is based around an iron atom. There are five woodlice species that are common in the U.K.   The "famous five species”,  they are Oniscus asellus (the common shiny woodlouse), Porcellio scaber (the common rough woodlouse),  Philoscia muscorum (the common striped woodlouse),  Trichoniscus pusillus (the common pygmy woodlouse) and  Armadillidium vulgare (the common pill bug).  Common names for woodlice vary throughout the country.   Several of the names refer to the fact that some species can roll up into a ball (armadillo bug, roly-poly, roll bug).  Apparently, the collective noun for woodlice is a quabble.