Woodlands.co.uk

Blog - August 2024

Changes in climate, phenology and food availability.

Changes in climate, phenology and food availability.

by The blog at woodlands.co.uk, 28 August, 2024, 0 comments

Since its formation, the earth has undergone change.  Life forms have come and gone.  There have been five major extinctions, the last being at the end of the Cretaceous Period; it killed off the dinosaurs and many other species.  This particular extinction event is thought to have been particularly rapid, due to an asteroid impact.  It caused a series of cataclysmic events and a rapid cooling of the Earth’s climate. Other changes, such as intense volcanic activity and tectonic uplift, may have pre-dated the asteroid impact but the event saw the elimination of many, many life forms. We are witnessing significant global change, that is also rapid in geological terms. Changes in the Earth’s climate and species composition usually take place over millennia, indeed over millions of years.  However, recent years have been very warm.  Global temperatures have changed noticeably. The warming that has been recorded “is exceptional relative to any period since before the last ice age, about 125,000 years ago”.  This warming has resulted in extreme and severe weather events in this country and across the world.  This year a record breaking January temperature of 19.9oC was recorded at Achfary, with storms Henk, Isha, and Jocelyn in the same month. The Earth’s warmest year on record (between 1850 to 2023) was 2023.  In early September 2023, the UK experienced a significant heatwave when daily maximum temperatures exceeded 30°C [somewhere in the UK] for seven consecutive days. [caption id="attachment_35526" align="aligncenter" width="675"] Drought![/caption] Such changes are not without effect. Phenology observations indicate that trees are producing their leaves earlier, woodland plants are coming into flower earlier. See the woodlands blog “Spring is on the move”.  A concern with these changing phenologies is that ‘mismatches’ can occur.  When trees come into leaf determines when caterpillars can feed and that, in turn, affects when birds can feed on the caterpillars and raise their young.  If these events do not occur in synchrony then the ‘functioning of the ecosystem’ is disturbed.  [caption id="attachment_25123" align="alignleft" width="300"] Leaf 'unfolding'[/caption] The agricultural and horticultural ecosystems that we have created are also affected by climate change. This year, heavy rainfall has meant that farmers in many parts of the UK have been unable to plant certain crops [such as potatoes, wheat and vegetables] during the key spring months. Some crops have rotted in the soil. In April, there was 111.4mm of rain, [the average for April is 71.9mm]; the sixth wettest April of the last 189 years.  Persistent wet weather also affects lambing, and can mean it is not possible to turn dairy cattle out onto grass / pasture, which in turn affects milk production. Monthly temperatures are more likely to be above average than below as climate change take effect.  This was true for the first three months of the year.  Warmer air holds more moisture and it can evaporate more water from the seas / oceans. A one degree (Celsius) rise in temperature adds 7% more moisture in the air.  Woodlands are affected by heavy rain as soil becomes waterlogged, which affects woodland flowers, and wet winters do no favours for animals that hibernate. The UK is not the only place to be affected by extremes of weather, be it rainfall and flooding, or high temperatures and drought.  India has recently experienced a period of extreme temperature, with temperatures approaching 50oC.  Such temperatures push human physiology to its limits.  Just as extreme rain is a problem for farmers, so is extreme heat and / or drought.  Brazil has been the main exporter of oranges for producing orange juice, but its recent crop has been substantially reduced as a result of flooding and drought; resulting in the worst harvest in decades. Spanish orange production has also been reduced due to drought. Like California, large parts of Florida ‘the Sunshine State’’ has seen its once-famous citrus industry reduced over the past two decades. Two diseases, greening and citrus canker have taken their toll, and then Hurricane Ian in September 2023, hit the citrus industry at the beginning of its growing season.  Large parts of the one famous citrus industry (oranges and grapefruit) have been lost and farmers are turning to the PONGAMIA tree to repurpose fallow land. [caption id="attachment_41381" align="alignleft" width="650"] Pongamia  : image thanks to Sarangib on Pixabay[/caption] This is a climate-resilient tree from India. They do not need fertiliser or pesticides.   It has been grown as a shade tree. As a member of the Fabaceae, it produces small, brown beans.  These are so bitter than not even wild hogs will eat them.  However, the beans are easily harvested by a machine that shakes the tree.  A San Francisco based company has found a way to remove the bitter tasting chemicals and use the beans in food production, as they yield a high quality protein and also an oil.  The bean (a legume) has been used to make a table oil, protein bars and a biofuel.   Orange juice production is not the only drink to be affected by changing climate.  Drought affects coffee plants and damages the quality of the soil, and excessive rainfall ‘favours’ fungal disease [e.g.coffee leaf rust and cherry rot], all of which will impact the yield and quality of the beans harvested.  Similarly, chocolate production is threatened. Cacao trees are impacted by global warming,  they can only grow and thrive within 10 degrees of the Equator, needing stable temperatures, high humidity, and ample rain.  However, temperatures are rising while rainfall has decreased. These changes lower the humidity. The trees are also under attack by a virus - cacao swollen shoot virus disease (CSSVD). Changing temperatures and rainfall patterns will influence what crops can be grown and where, it will also influence their cultivation and the working patterns associated with those crops.  Climate change is thus a factor contributing to food inflation and insecurity across the world.    
Phytomining and hyper-accumulators.

Phytomining and hyper-accumulators.

by The blog at woodlands.co.uk, 19 August, 2024, 0 comments

An electric or hybrid car needs a rechargeable battery to power the electric motors of the vehicle. The batteries make use of oxides of lithium nickel manganese & cobalt. The battery of such vehicles makes up a significant portion of  the cost and  environmental impact  of an electric vehicle.  Growth in this market has created issues in securing ethical battery supply chains. The future supply of nickel, cobalt and lithium is problematical, presenting challenges both in environmental and geopolitical terms.  Much of the battery production is centred on China.  Mining of a metal such as Nickel generates significant quantities of carbon dioxide, which contributes to global warming.  The demand for Nickel is forecast to double. An alternative to traditional mining techniques for metallic ores is phyto-mining. This is possible where there is a significant quantity of the metal in the soil, and there is a plant that can take up and accumulate  the metal.  The absorption and accumulation of metals like Nickel, Cadmium and Copper is perhaps more problematic as they are toxic to many plants.  Worldwide some 450 different species can absorb and accumulate ‘toxic’ metals, growing in ‘poisoned’ or toxic soils, such as former mine workings.   Some of these plants are hyper-accumulators – noted for their ability to take up a metal to many times the level in the soil. In Albania, a project is underway to use a plant to ‘mine’ nickel.  The plant is a perennial herb with yellow flowers - Odontarrhena decipiens.  It is a member of the Brassica / cabbage family and is a hyperaccumulator.  It can take up into its stems and leaves about 2% of its dry weight as nickel.  The plant is being ‘farmed’ in Albania, where there are nickel-rich soils derived in part from the mineral Olivine.     Though olivine contains too little nickel for conventional mining, it has enough for hyper-accumulators to absorb and concentrate it.  When the olivine is ground up and spread on the field, it not only replenishes the soil with nickel [that the plants absorb] but it also reacts with carbon dioxide in the atmosphere locking the CO2 away.  This project is being developed by ‘Metalplant’ . Whether phytomining using this plant will prove to be a useful way of augmenting Nickel supplies remains to be seen.  
Mistletoe Wood

Mistletoe Wood

by Dawne, 9 August, 2024, 0 comments

High up in the Chilterns stands Mistletoe Wood, a semi natural ancient woodland.  It is comprised of beech and oak with a smattering of other native species. My brother and I have been custodians of these four acres for nearly three years.  Today, it has a large open glade we use for social forestry.  It has a hard fought for bothy, which put the planners in a spin (they were eventually won over by our woodland management plan), a fire pit and benching.  The latter planked from the first tree we had to take down and various tree huggers, which hold tarp or shade sails depending on the English weather. We use this area to entertain, educate and encourage and it has been home to : forestry first aid,  a murder mystery and  our annual Wood Moot when local woodlanders come round, share lunch and talk all things woody, whilst trying to avoid the harvest mites.  The other three and half acres are largely left alone, we beat the bounds at least twice a week looking out for danger and excitement, a 200-year-old beech came down in Storm Henk which was a surprise. We have removed 20 trees from a massive old beech, that was toppling near the dell [where the children play], to some medium-size ash which had die back. We process and extract them using only hand tools and our trusty trolley “Dolly”.  The woodland is blessed with the most wonderful fungi including delicious trompe de mort and we do entertain foragers and learn from them. This summer we have had the first honey from our beehives.   In Mistletoe, it is more about what we don’t do than what we do!  
The trees of Kew Gardens.

The trees of Kew Gardens.

by The blog at woodlands.co.uk, 2 August, 2024, 0 comments

There are eleven thousand trees in Kew Gardens.  Each year, a few trees are lost due to natural causes, old age, disease etc.   In 2002, a drought resulted in the loss of  some 400 trees.  Such a prolonged dry spell is  likely to occur again and again as global temperatures rise, and climate change takes a hold. Modelling of future climate scenarios by Kew scientists suggests that towards the end of this century between a third and a half of Kew’s trees could be lost.  Trees like the English oak, beech, birch and holly could be vulnerable to warmer temperatures and extended dry spells.  There is a plan at Kew to replace gradually trees with species currently found in warmer areas, such the Mediterranean, Asia and Central America. Examples might include species such as the iberian alder, cherry hackberry and Montezuma’s pine.  Many of the plants in the gardens will survive, [including Kew’s ‘Old Lions’] as they were collected from in and around the Mediterranean; some of these date back to the victorian era or earlier. The ‘old lions’ of Kew are trees from the original grounds / garden that still survive. Examples include : Japanese pagoda tree (Styphnolobium japonica) Maidenhair tree (Ginkgo biloba) Oriental plane (Platanus orientalis) Caucasian elm (Zelkova carpinifolia) Black locust (Robinia pseudoacacia) The Caucasian elm dates from 1762, when an arboretum was planted.  It is thought that it might have been in a batch of plants from the Caucasus, planted in what is now the herbarium paddock.  In 1905, the height of the tree was recorded as 60 feet (18M), though they can grow to 100 feet.  A larger caucasian elm can be seen at  Tortworth. One species of oak that is common at Kew is the holly or holm oak (Quercus ilex).  This is a common, naturalised oak that was probably introduced into the country in the sixteenth century.  It is a hardy, slow growing tree and many new holm oaks were planted in 2008 to redefine the Syon Vista.  The wood of the tree is strong and, in the past, it was used in carts and farming equipment. Its acorns start off green in colour but turn a reddish brown; they are a tasty treat for pigs. The threat to Kew's trees is not unique, parks and urban spaces across the country need to plan for the future, to ensure that their trees can offer some resilience to changing weather patterns. Full details of Kew's planning here.