Woodlands.co.uk

Blog

Lino cutting and printing

Lino cutting and printing

by Bridget, 13 December, 2022, 1 comments

The first stage to lino printing is to find inspiration. Christmas is a great time to try this craft as it can be used in Christmas cards or for printing your own wrapping paper. It's important to bear in mind that shapes are paramount with lino cutting and printing, so it's a good idea to look for distinctive shapes with clear edges. You can add in shading or marks after printing if you choose.    Winter is a great time to look for inspiration. I like to look in the woods. While walking, I look for leaf shapes or dried seed heads are my favourite. You can also draw from imagination if you prefer. Leaves like holly are fairly easy to draw with their clear defined points.    When I've collected some specimens I need to transfer them to paper so I can trace the shapes on to the lino. I'm not the best artist so after a few disappointing sketches I came up with another plan. I photocopied the leaves and seedheads by placing them on the glass of the copier and covering them with a sheet of white paper.   Bingo! They came out really well.   [caption id="attachment_39235" align="alignright" width="300"] Seed head[/caption]                   The hemlock seed heads looked a little cluttered which is tricky to create on the lino so I stripped the seeds and tried again. Important to remember some seeds, leaves etc are toxic so you need to be sensible handing them. [caption id="attachment_39246" align="aligncenter" width="675"] Tracing the leaves[/caption] Once I have the copied shapes or drawn the images I trace them onto tracing paper then flip the tracing paper and rub the back to transfer the image on to the lino. If it's not completely clear you can re draw it or draw directly on to the lino. When you have an image that you're happy with it's time to cut.   So, what will you need ? [caption id="attachment_39236" align="aligncenter" width="675"] Cutter with various nibs, plus a roller.[/caption] Lino.  This comes in different levels of density and lots of different sizes. You can purchase a selection to find out which you prefer. I buy from Etsy but there are many other available sources. Tools.  Cutting tools are small, shaped blades that fit into a handle. It takes some trial and error to find out what works for a design so good to have a spare square of lino for making practice cuts. [caption id="attachment_39238" align="aligncenter" width="675"] Cutting a flower shape[/caption] I cut my design or outline into the lino square - remember - what ever you remove will be white on the final print - and cut any detail I want with different blades. This may be trial and error and you can always come back and cut more but, obviously, cannot fill back in. Ink roller.  A small plastic or rubber coated roller, like a mini paint roller. This is the fun bit. Choose your ink colour and put a little ink on a smooth surface. I have an ink tray but you could use an old tile or similar. Roll the roller in the ink then over the design making sure it's well covered them press the lino piece onto paper or card or the other way around - pressing the paper on to the lino and run your fingers over the back to transfer the ink.  [caption id="attachment_39239" align="aligncenter" width="673"] Place ink in the tray and spread[/caption] [caption id="attachment_39240" align="aligncenter" width="675"] Evenly spread the ink on the roller and roll over the shape on the Lino[/caption] Inks   These come in every colour and shade and are water based so you can get proper messy and it all washes off. [caption id="attachment_39237" align="aligncenter" width="675"] Rolling tray and different colours of ink[/caption] It's entirely possible your creation doesn't look exactly how you wanted it to first time. It's a process where you will tailor how you draw, cut and print to get to what you want to achieve.   If you want you can add to a print with another ink colour and fill in different shape with another link cut or overlap a design or colour. There is lots of inspiration on the internet.  Designs can be simple or complicated depending on who is creating.   My daughter enjoyed making a toadstool print which was a simple shape and cut and now plans to make some Christmas cards. [caption id="attachment_39241" align="aligncenter" width="675"] Place lino onto card to print image and allow to dry.[/caption]
Too hot, too dry.

Too hot, too dry.

by The blog at woodlands.co.uk, 4 August, 2022, 1 comments

The UK has experienced some of the highest temperatures ever recorded in recent weeks, and in some parts of the country this has coincided with very low levels of rainfall.  It was the driest July on record for East Anglia, southeast and southern England, according to provisional statistics from the Met Office.  July was also the first time the UK exceeded temperatures of 40°C: on 19 July during an intense heatwave.   These conditions are not without their effects on wildlife.  Whilst warmth can accelerate plant growth and development, and also speed up insect life cycles, but the recent very high temperatures have significant effects, for example:  Drying of the soil As the soil dries, so earthworms burrow down deeper.  Insects, woodlice, spiders, etc avoid the surface of soil, hiding in litter so birds like song thrushes, robins and blackbirds struggle to find something to eat. Consequently, they are less likely to produce a second brood of chicks. This scarcity of invertebrates also affects ground feeding mammals, like hedgehogs (and badgers in more rural locations). Wetland areas dry out; for example grazing pasture that floods in winter - like the Ouse Washes.  This makes it difficult for birds to find food. Lack of water for plant growth Reduced rainfall and high rates of evaporation from the soil (and plants) mean that there is considerably less water available for plant growth.  The growth of leaves is reduced so that there is less material for caterpillars and other insects to eat.  With fewer leaves , there are also reduced surfaces for butterflies and other insects to lay eggs. High temperatures High temperatures and lack of water can affect many animals (including us). Rivers are running at very low levels and some have more or less disappeared.  DEFRA’s latest assessment of principal salmon rivers, such as the River Test shows that 74% of rivers in England are now ‘at risk’. The Environment Agency has noted the flow rate in the Waveney as 'exceptionally low', while other rivers in East Anglia like the Great Ouse  the  Yare, and the Little Ouse are described  as 'notably low'. The young of birds like swallows and swifts are at risk of fatal overheating (the young and old of various species are often more susceptible to heat stress).  Bumblebees cannot forage at high temperatures. Their bodies are covered with ‘hairy coats’ so they can fly when it is cool; but these become a burden in hot spells.High temperatures also shorten flowering time, and hence the availability of pollen and nectar for pollinators (bees, bumblebees, overflies, butterflies). Wild fires. [caption id="attachment_35352" align="aligncenter" width="650"] Woodland recovering from a fire[/caption] High temperatures increase the risk of wild fires, especially on moorland and heathland.  These fires can spread quickly and over wide areas. Young chicks (e.g. Dartford Warblers), eggs, snakes, lizards, small mammals, dragonflies and butterflies are lost.  Accumulated nutrients and stored carbon are lost from the ecosystems. The site of Springwatch Wild Ken Hill in coastal Norfolk suffered an intense fire during the recent hot spell.  The area is home to turtle doves, the grasshopper warbler and other rare birds.   It is hoped that most escaped but mammals, reptiles and amphibians, late-nesting and juvenile birds may not have fared well.   Grassland and woodland fires have also been reported at various sites across the country.  The UK is not alone in facing these problems, Spain, Italy, Portugal, Greece, France and Germany have all lost many thousands of hectares to wildfires. [caption id="attachment_38699" align="aligncenter" width="700"] what was once was grass .....[/caption]  
How many trees are there in the UK?  Will tree planting help much?

How many trees are there in the UK?  Will tree planting help much?

by Angus, 24 June, 2022, 6 comments

How many trees are there in the world? When Thomas Crowther and Henry Glick used geospatial data in 2015 to estimate the number of trees in the whole world there was good news and bad news. Good news that there were several times as many trees as anyone had previously realised (total is about 3 trillion) and bad news that the number was declining faster than expected.  The calculation was done partly to establish a baseline so that tree-planting efforts could be put into perspective - the UN's Billion Tree Campaign managed to plant about 15 billion trees over 10 years in virtually all countries across the world (193).  But whilst these numbers sound large this has only added 0.5% of trees so much more needs to be done if we want to reduce the damage humans have done to tree numbers - before humans emerged there were about twice as many trees as there are now.  Perhaps that's why the Trillion Tree Campaign was launched in 2018 in Monaco - a principality covering only two square kilometres and almost bereft of trees. More locally, the UK has a tree count of about 3 billion trees - about 45 trees per person - calculated by analysing aerial photos and estimating tree numbers as was done under the UN's Plant for the Planet project.  There is some flexibility on the definition of what counts as a tree - and this assumes you don't count all the self-sown seedlings or bushes, which some might consider as trees.  This number is dominated by a few species - of the commercially grown plantations in Scotland, for example, 60% of the trees are Sitka Spruce so they don't add as much to biodiversity as a wider species mix would do.  And those 45 trees per person is a bit misleading in that there may be nearer to  400 trees per person in Scotland  - it is more sparsely populated with less than a tenth of the UK's population but almost half the trees. The UK's tree-planting is put into perspective by comparing the relative numbers - the UK's 3 billion trees amounts to one thousandth of the global total whereas nearer to 1% of the world's population is British - so by comparison with the world's average, on a per-person-basis a Briton has a tenth as many trees as the average citizen of the world.  The most densely tree-ed parts of the world are the tropics where 43% of the world's trees are growing. At a recent general election (2019) the political parties were competing to promise how many new trees they would ensure were planted - the Liberals and SNP each promised 60 million a year, whereas Labour said they would do 100 million every year.  A more realistic Conservative party promised 30 million trees every year which would equate to about 15,000 hectares (or 6,000 acres).  Despite this lower manifesto promise, the government is really struggling to achieve even that amount - but if they did reach that target every year for 10 years it would add 10% to the UK's tree cover. There is ample scope for more trees with the UK having only 13% tree cover, but are there are other ways to increase the numbers beyond tree planting? Trees will naturally establish themselves if they are not cut or grazed - perhaps one thing the government could do would be to reduce the number of wild grazers - mostly deer and sheep.  
Why plant trees?

Why plant trees?

by Honey Wyatt, 18 May, 2022, 1 comments

There’s a seemingly endless stream of bad news in the world: the coronavirus pandemic has forced us stay inside more than we’ve ever had to in our lifetimes, and there’s the ever-impeding threat of the climate crisis. Our collective mental health is suffering, and more than ever we’re looking for anything that can provide some alleviation from this.  The government recently found that almost half of the UK’s population say they are spending more time outside than they did before the pandemic, so it’s clear that green spaces are more important than they have ever been for both our own wellbeing and the wellbeing of our planet, which really begs the question ‘why not plant more trees?’  Why is tree planting good for the environment? Forest ecosystems are one of the world’s greatest carbon sinks in existence. They hold up to 45% of all the carbon stored on land, as well as being home to 80% of the animal and plant life on land. Maintaining our forest ecosystems could be one very large step towards solving the climate crisis; and though this won’t be enough on its own, it’s definitely a good place to start. On a smaller scale, one hectare of young woodland  has the ability to lock up over 400 tonnes of carbon.   Imperial College estimates that a tree planting initiative on a worldwide scale could capture the equivalent to one decade’s worth of carbon emissions (at current rates) by the time these forests reach maturity, or up to 1/3 of all emissions from human activities that remain in the atmosphere since the Industrial Revolution. How can tree planting can benefit you? Local tree planting initiatives are an excellent means of drawing a community together. Forest For Peterborough, a tree planting organisation in the UK, started in 2010 with the aim to plant 230,000 trees by 2030, and at the same time provides a space where the community can come together and learn how to make responsible and sustainable choices. In 1980 Edward O Wilson, American biologist, popularised the term biophilia to describe the innate connection people have to the natural world, and it’s true that we as humans seek and crave the comfort of the natural world, particularly in times of stress. The UK government estimates that visits to UK woodlands have saved an estimated £185 million in mental health treatment and costs. At the same time, street trees in rural areas are thought to have avoided £16 million in antidepressant costs, so why are there not more trees being planted in rural and urban areas? More local tree initiatives like Forest For Peterborough could both help save people’s mental health and help the UK government reach their target of becoming carbon neutral by 2050. Planting trees can also help with our physical health. It goes without saying that having poor mental health can begin to have an impact on our physical health, and vice versa (in fact, loneliness has the same affect as smoking 15 cigarettes per day), and having green spaces near our living areas helps to improve our attention and creativity. Walking amongst trees even boosts our immune system and reduces our cortisol levels. It’s also been shown that in areas affected by tree loss, women have a higher risk of cardiovascular disease (222,000 hectares of green space have been lost to urban sprawl between 2006 and 2012 in the UK) and senior citizen’s survival rate is 17% higher if their residence is within walking distance of a green space.  Planting trees can even help your wallet, too (maybe money does grow on trees!). Aside from saving the UK government millions of pounds in mental health costs and the projected costs that could come with the climate crisis in future, planting trees next to buildings can reduce the buildings’ energy consumption by up to 26%. This lowers the buildings’ internal temperature by 4 degrees in the summer and increases it by 6 degrees in the winter, so there’s less of a need for central heating and cooling systems (and of course prevents further emissions into our atmosphere). House prices rise by 9 to 15% if they’re near trees: they add to the aesthetic value of a neighbourhood, make people feel safer, and have been proven to lower crime rates. Why not plant trees? So, why plant trees? If planting trees for the sake of the planet isn’t enough of a reason, then there are plenty of ways tree planting can help you and your community. If you’re looking for tree planting opportunities there are plenty of events coming up, such as National Tree Day, which this year will be celebrated on July 31st. For the Queen’s Platinum Jubilee a tree planting initiative - The Queen’s Green Canopy- will encourages people across the UK to 'Plant a Tree for the Jubilee.’  Tree planting land for sale is available through the Woodlands website- let’s get planting!
A problem with plastic. 

A problem with plastic. 

by The blog at woodlands.co.uk, 21 April, 2022, 3 comments

In the C19th, many objects were made from ivory.  The ivory came from the slaughter of elephants.  As elephant populations fell, so the search for a suitable substitute began.   Celluloid was one of the first materials used but it was easily combustible. It was soon replaced by other materials like Bakelite,  this was the first entirely synthetic plastic.  It was made from phenol and formaldehyde.  It was used for toys, radios, telephones etc.   Bakelite  was tough, heat resistant and  did not conduct electricity.  Other materials followed, and many different plastics are produced today; for example, polyethylene (which is widely used in product packaging) and polyvinyl chloride [PVC] (which is used in construction and pipes because of its strength and durability).  The trouble is that plastics are just so useful.  Plastics are cheap, lightweight and durable.  Durability is a good quality when the plastic is being used but not when it is discarded, for example, into landfill where it may take centuries to degrade.  Sadly, many consumers leave empty bottles / containers / wrappers in the streets, on the beach, at picnic sites etc.  As most plastics are made from fossil fuels / oil, the manufacture of plastic is also a driver of climate change. Since the middle of the twentieth century, it is estimated that some 8.3 billion tonnes of plastic has been produced. Sadly much of this has ended up in landfill, in rivers, the soil, and the oceans - with significant effects of wildlife. Plastic pollution is ubiquitous. For example, the Great Pacific Garbage Patch, which is a collection of large areas of plastic and other debris in the North Pacific Ocean. It has been estimated that it contains some 1.8 trillion pieces of plastic .  It is a serious threat to marine life such as whales, sea turtles, fish, and birds.  Plastic items are discarded with little thought to the consequences.  Bottles etc can end up as traps for many animals and a few years back we (at woodlands) found a child’s plastic boat dumped in a woodland (see featured image above).  Sometimes, we see the distorted remains of plastic tree guards ‘strangling’ young trees. Plastic carrier bags (sometimes filled with dog faeces)  can end ups suspended from trees / shrubs in woodland, or caught on wire fencing, waving n the wind. Discarded plastic items come in all shapes and sizes; those that are 5mm or smaller are termed “microplastics.”  Microplastics come in part from larger plastic pieces that degrade into smaller pieces; but also from microbeads.  Microbeads are very small pieces of polyethylene plastic that are added to health and beauty products, such as some skin cleansers and toothpastes. Now microplastics are to be found everywhere from deep oceans, to Arctic snow and Antarctic ice.  They are found in foodstuffs and drinking water.  One investigation found that if parents prepare baby formula by shaking it up in hot water inside a plastic bottle, their child might swallow tens of thousands of these microplastic particles each day.  The movement of these particles through ecosystems is  graphically summarised in this article.   There is currently much discussion and research about how these microplastics will impact on the environment and different organisms, including us.  Because they are so small and to be found widely in the environment,  they enter organisms and food chains.  Apart from the plastic in these particles, they may also contain chemical residues of  plasticisers, drugs, and pharmaceuticals, and heavy metals may stick to them.  Sometimes, sewage sludge may be used as fertiliser and this can contain nanoplastics.   Also, treated wastewater is used for irrigation  purposes and this again may be a source of plastic.  Research indicates that earthworms in microplastic ‘enriched’ plant litter grow more slowly and have a shorter life span, and there is evidence that the gut of earthworms becomes inflamed after exposure to microplastics.   Earthworms are important in aerating the soil and transporting materials such as dead leaves from the surface to deeper in the soil, they also 'inadvertently' transport micro-plastics.  Springtails, a group of soil micro-arthropods (Collembola) can also help move micro-plastics in the soil.  The movement of microplastics through the soil makes these materials ‘accessible’ to other soil dwellers but it is not clear if they pass along food chains (as has been the case with pesticides). Whether nano-plastics are taken up by or affect plants - again is not yet clear.  However, the chemicals released by plastics such as phthalates may taken up by plants. There is a significant risk of physical and physiological damage to organisms and ecosystems by these micro-plastics *. The particles also get into the human body and the consequences for our health are, as yet,  unknown. further information on nanoparticles etc : https://www.sciencedaily.com/releases/2022/04/220420133533.htm
January’s Fungi Focus – Netted Crust (Byssomerulius corium)

January’s Fungi Focus – Netted Crust (Byssomerulius corium)

by Jasper Sharp, 24 January, 2022, 0 comments

Crust fungi is a generic term referring to those species that grow flatly in patches that spread out against their substrate, typically on dead wood such as logs (on the side and underneath), or on stumps and fallen branches, although a merciful few may appear as unwanted guests in domestic settings, like the notorious Coniophora puteana (“Wet Rot”). Examples of crust fungi can be found throughout the whole year, but a few species are particularly noticeable around the winter months, when there’s little else of apparent interest around. The term ‘resupinate’ is often used to describe these types, which means that the fertile surface, or hymenium, from which they release their spores faces outwards, unlike conventional cap-and-stem types, where the hymenium is spread out over the gill area and faces downwards from beneath the cap.  With many of these species also forming shelves, with their uppermost margins projecting horizontally depending on the orientation of their substrate, some often find themselves described also as bracket fungi: indeed, a Facebook group dedicated to their identification, recording and photography is called Crust Fungi and Polypores. The most salient example is the Hairy Curtain Crust (Stereum Hirsutum), which is a common sight in broadleaf woodlands in January and February. (Note however that the terms ‘resupinate’ and ‘bracket’ are just descriptive categories which don’t have any meaning when ordering the various species in strict biological terms.) Crusts don’t have gills, but the hymenium can either be totally flat, in species described as corticioid, or it can be covered in pores, as for example species like the Cinnamon Porecrust (Fuscoporia ferrea). They also might be covered in warts, wrinkles, teeth or fine hairs that you might need a hand lens to discern properly. Different species can be a variety of colours (including salmon pinks, vibrant yellows and fiery oranges to the more nondescript white and not-quite white types), while other distinctive features might be their toughness, thickness, and how easy they are lifted from their substrate. I’ve covered a number of these different forms in more detail in previous posts on Elder Whitewash (Hyphodontia sambuci) and my rare find of Antrodia carbonia, as well as those linked already in this post. Identifying crust fungi can be a daunting business, with literally hundreds of species in the British Isles alone. Most might be happy to pass them by unnoticed. After all, they have no culinary value. This makes them a much understudied groups of fungi among amateur naturalists. For those that care to take a closer look however, the can do show up some very attractive aspects. The Netted Crust is one such example. It is very prevalent during the early part of the year and relatively easy to recognise. From my experience, it tends to grow on, and indeed along, fallen branches and twigs that are quite thin, with the hymenium facing down but the margins of the fruitbody projecting outwards in long extended wings, a bit like a flatworm.  On thicker branches, it might also form brackets.  The flesh is white and soft: it is easily torn and removed from the branch, although with age becomes tougher, with the underside hymenium also tinging yellow-brownish. The upper side, if looked at closely is covered in fine downy hairs, which you might need a hand lens to see properly. It is, however, the underside where this species really shows off its most magnificent aspect. It is covered in a much more discernible intricate pattern of low, irregularly shaped grooves and ridges, a surface that mycologists refer to as ‘meruloid’ – hence the ‘merulius’ part of its Latin name, Byssomerulius corium, and the ‘netted’ part of its common name. The Netted Crust is one of the most commonplace and readily identifiable of the crusts, and as such provides a wonderful gateway into looking more closely at this surprisingly fetching domain of fungi. As ever in the woodlands, it’s a case of look closely and you’ll find a whole new world of interest, and undoubtedly one of the best points about resupinate fungi is that you can find them across the entire year.  
August Fungi Focus: Oak Mazegill (Daedalea quercina) and Blushing Bracket (Daedaleopsis confragosa)

August Fungi Focus: Oak Mazegill (Daedalea quercina) and Blushing Bracket (Daedaleopsis confragosa)

by Jasper Sharp, 13 August, 2021, 0 comments

It is good to have points of orientation in the woods. No matter how familiar with a particular spot you might be, these environments can change so dramatically throughout the seasons – paths and clearings become overwhelmed with brambles, branches that weren’t an obstacle in the winter become suddenly more so when covered in leaves, and woodlands are ironically much gloomier in the summer months with a thick canopy overhead than when the trees are bare – that it’s surprisingly easy to lose ones bearings.  One of the marker points in my favourite stomping ground, a chestnut coppice just outside of Canterbury, was a bracket fungus that I found growing from the top of a stump several years ago. It was a relatively easy identification for me from this sometimes daunting group – the labyrinthine arrangement of branching, elongated grooves quickly pointed me towards an Oak Mazegill, despite the fact it was growing on chestnut.  Oak Mazegill For several years, this particular specimen by the side of the path also signalled the point where I knew I’d entered into a sector of more ancient woodland, and one of those hotspot areas where there were usually lots of exciting finds nearby. Then one day it was gone – the clean cut at the base where it grew from the wood indicating that is had been consciously removed with a knife. Even now, about a year later, I can still see traces of the patch where it had endured on the top of the stump for so many seasons. The Oak Mazegill, or Daedalea quercina – the first part of its latin binomial referring to the figure of Daedalus who in Greek mythology constructed the labyrinth at Knossos housing the legendary minotaur – is a particularly prevalent fungi in my local woodlands; much more so because, as a perennial, the fruiting bodies last for years rather than rot back or drop off at the end of the season. It shares this aspect with the tough woody brackets like the Artists Conk (Ganoderma applanatum), covered in passing in a previous post on brackets, which has been known to last for decades. Oak Mazegills aren’t quite as durable, although I’ve no real idea how long a fruit body might last. Their flesh is tough, but still possible to make a clean cut through it with a sharp knife with relative ease, as if it were a piece of rubber. Oak Mazegill This species highlights the importance however of always looking at the underside when trying to identify brackets. The top is rather nondescript, a sort of buff, pale yellowish brown colour ranging to orangish brown and reaches up to 20cm across. They often grow in semicircular tiers, with the full width of the body firmly attached to the wood making them very difficult to dislodge, and sometimes have an upside-down pyramidal shape, so that if viewed in profile, the maze-like underside is very easy to see. The growth isn’t always so uniform, however, drawing attention to the fact that there can often be a fine line between the brackets and certain poroid resupinate or crust fungi, with the form they assume heavily influenced by the orientation of their substrate.  Oak Mazegills don’t always immediately form brackets when first emerging, with the specimen depicted here assuming a more resupinate form. For example, I found myself once very confused by a newly emerged Oak Bracket growing from the top of a  stump that had yet to form a cap, so that all that could be seen was a think bulbous growth covered in brain-like grooves that could look like a number of other thick poroid resupinate fungi, such as the Common Mazegill (Datronia mollis) – and it should be mentioned that the Common Mazegill, while often found in its flat resupinate form, can form caps if growing on a vertical substrate, albeit with thinner caps of a far darker colour. The not dissimilar resupinate fungus the Common Mazegill has a less pronouncedly maze-like pattern of pores Mature Oak Mazegills, I do find pretty distinctive, but the reason I’m covering them for this month is that it is during the summer months that the new fruitbodies start emerging, so if you have any problems identifying them, I’d suggest going back and monitoring their progress over the coming months, for there are a couple of species that you could confuse them with before they are fully grown. The first of these is the Birch Mazegill (Trametes betulina), but these form much more delicate annual fruitbodies which are thinner fleshed and more easily broken, with grooves on the underside that are sharper edged and look more like conventional mushroom gills (although as I described in the post linked above, these aren’t true gills) and a felty upper surface. They also grow on birch, rather than oak or chestnut, so there shouldn’t so much room for confusion here. The Blushing Bracket is less ‘chunky’ than the Oak Mazegill, despite certain similarities when viewed from above. Rather more easily confused for the Oak Mazegill, however, especially in their early stages of growth, is Daedaleopsis confragosa, the Blushing Bracket. Again, these feel a lot slighter, thinner and flatter than the chunky, coarse gilled bodies of the Oak Mazegill, although the flesh is similarly tough.  However the base is much narrower where it grows out of the wood, making it look more fan-shaped. Looking underneath, the pores are much less maze-like, and more like straight lines, which become more elongated as the cap grows radially outwards.  The underside of the Blushing Bracket reveals very different patterns than that of the Oak Mazegill The cap surface starts out a pale beige, but as it grows, it darkens through pinks, browns, russets and vinaceous purples to near black, hence the name. They also are more pronouncedly ‘zonate’, with subtle differences in texture and colour appearing from the centre and outwards. The Blushing Bracket might be confused with a number of other long-pored brackets in their early stages, but if you follow their development across the months leading into winter, it soon becomes clear what they are. Again, they favour deciduous woods, but are less likely to be found on oak and chestnut than on birch, alder and willow. Some of the literature suggests that Blushing Brackets are perennials, like the Oak Mazegills, but my experience suggests that while the new fruit bodies from any given summer may be found well into the winter, very few make it past a year. Blushing Bracket : The upper side of the Blushing Bracket darkens and reddens across the winter months Blushing Bracket : Sometimes reddening to a dramatic deep red These are but a couple of the more common hardwearing brackets with elongated pores that are found in the UK that might seem a little drab when just glimpsed in passing, but actually are quite interesting when you know what you are looking at. Like so many fungi, the exact differences are difficult to describe precisely in words, but once you get a feel for them, they can be recognised at a glimpse.  If you are a regular woodland wanderer, it’s worth paying at least passing attention to them because, as mentioned before, the new fruitbodies will have already begun appearing by now, and given that they’ll be with us for some months yet to come, it’s rather fascinating looking at how both species develop in form and colour. Additional images. Blushing Bracket Oak Mazegill Oak Mazegill Blushing Bracket   
In praise of sunflowers.

In praise of sunflowers.

by The blog at woodlands.co.uk, 1 August, 2021, 0 comments

The vibrancy and gaudiness of sunflowers is one of the delights of summer.  The common name "sunflower" generally refers to Helianthus annuus, whose round flower heads look like the sun.  Sunflowers are cultivated as food crops for humans, cattle, and poultry, and also for the garden. They typically grow during the summer and into early autumn, with the peak growth season being mid-summer. A field of sunflowers is a welcome relief from the acres of oilseed rape. The flower of a sunflower is not a flower but hundreds of small flowers (florets) massed together the better to attract pollinators.  The structure so formed is known as a capitulum.  The inner florets are arranged in spirals that conform to fibonacci sequences.  The pattern of these florets has been described mathematically by Helmut Vogel and it allows for the most efficient ‘packing’ of the florets in the ‘flower’ head. Before the flowers open,  the plants tilt during to face the sun, gaining more light for photosynthesis. This movement is known as heliotropism  and continues for a while when the flower head opens. This may help to attract pollinators.  Frequent visitors to sunflowers are bumblebees.  Sadly, like honey bees, bumblebees face a number of problems which include parasites.  However, recent research in the United States suggests sunflowers can help certain species of bumblebee.  If sunflower pollen is included in the diet of the common eastern bumblebee then it helps reduce infection by a parasitic protozoan Crithidia bombi.  This is a parasite that lives in the gut of bumblebees. When they pass out of the gut in cysts, they can be ‘picked up’ by the next passing bumblebee (or another insect, as the parasite is not too fussy). Once established in a bee, the parasite can affect the ovaries.  If a  queen is infected then the reproductive success of the colony is affected. Giacomini et al. have found that good nutrition is vital for bumblebee health and that sunflower pollen can be a huge benefit when it is included in the diet. They noted that the majority of the bees that consumed sunflower pollen had no detectable infection a week later. The pollen* significantly reduced infection by the parasite. So sunflowers are a visual feast for us, and an edible one for bumblebees and bees.  They also provide us with seeds.  The seeds are rich in monounsaturated and polyunsaturated fats, notably linoleic acid. The seeds also contain phytosterols which may contribute toward lowering the level of blood cholesterol.  The seeds may be pressed releasing sunflower oil, and the remaining ‘cake’ can be used as a protein rich animal feed.  The Ukraine and Russia are the top producers of sunflower seed. A somewhat different use of sunflowers is phytoremediation; using plants to remove toxic organic or inorganic compounds from soil.  After the disaster at the Chernobyl nuclear reactors in 1986, an exclusion zone with a radius of 30 km centred on the nuclear power plant was created. This was later expanded to include other heavily irradiated areas.  Even now, no one lives in the exclusion zone, but scientists and others may ask for permits to allow them to enter for short periods.  Fields of sunflowers were planted to ‘harvest‘ the radioactive metals (notably caesium-137 and strontium-90) from the soil. The sunflowers accumulated these elements in their tissues.  When the sunflowers had completed their growth, they were harvested and burnt, leaving only the radioactive ash behind. This material could then be vitrified (incorporated into glass) and stored underground in a shielded container. In Brazil, a study looked at the ability of different sunflower cultivars to remove nickel, copper and lead from contaminated soil.  Though phytoremediation with sunflowers proved to be an efficient and low-cost method for the treatment of contaminated soils, the cultivars varied in their ability to take up particular metals. “Cleaning up’ with sunflowers was tried after a tsunami hit the Fukushima Daiichi nuclear power station in Japan.  However, it was not very successful.   As different cultivars vary in their capacity to hyperaccumulate, so it is important to match the cultivar to the situation. Planting sunflowers in this case did little to improve the situation. This could be in part due to the sunflowers but also be associated with the soil type and the time that the caesium has had to bind to the soil particles. Understanding the mechanisms and detail of hyper accumulation is critical if sunflowers are to be used for phytoremediation in the future. Pollen is rich in secondary plant metabolites e.g. flavonoids, terpenoids, alkaloids, amines, and chlorogenic acids [caption id="attachment_35695" align="aligncenter" width="650"] field of sunflowers[/caption]  

Next Page »