Woodlands.co.uk

Blog - Flora & Fauna

pollution over city

The loss of animal species, and the effects on fruit and seed dispersal.

by The blog at woodlands.co.uk, 23 February, 2022, 0 comments

Sadly, the world is losing species, both plant and animal, at a significant rate.  Indeed, some claim that we are now experiencing the sixth mass extinction.  In contrast to previous extinctions (the Permian extinction is thought to be due to an asteroid impact), the present loss of species is largely associated with a mix of direct and indirect human activities. These include :- destruction and fragmentation of habitats,  Exploitation fishing stocks and hunting (think dodo),  chemical pollution,  invasive / introduced species, and  human-caused global warming The loss of animal species has knock-on effects in terms of food chains and biodiversity. Plants are also affected as many rely on animals for the dispersal of their fruits and seeds.  In times of global warming, it is essential that plants can reach new areas that are suitable for their growth.  If not, they are stuck in areas where they may not be able to survive in the changed / changing conditions.  This could mean that plant species are lost, together with the ‘ecosystem services’ that they provide (be it food, timber, carbon storage, flood mitigation etc).  Seed dispersal is also important in terms of recovery from ecological disasters, like wildfires.  Natural forest regrowth usually happens through seed dispersal. If an ecosystem is rich in species, it is generally more resilient to environmental change.  The relationship between fruit / seed dispersal and animals has been significantly affected by the creation of roads, motorways, farms, and the development of cities - essentially habitat fragmentation.  Animal dispersal is often associated with fleshy fruits.  Whilst this is particularly true / obvious for many tropical fruits, it is also the case for many plants in temperate regions.  Berries, hips and haws are dispersed by animal means, with birds being particularly important agents. Several pines produce large seeds and attract corvids such as nutcrackers and jays. The birds, sometimes called scatter hoarders, collect seeds and bury them in areas away from the parent trees but in habitats suitable for the next generation of trees  Mammals also play significant roles.  In Africa, elephants are important  seed  dispersers  for  numerous  species; they  have an extra-ordinary sense of smell and will search out ripe, fleshy fruits. Some seeds have been shown to be distributed 60+ kilometres from a parent plant. Not only this, but the journey through the gut of the elephant seemingly increases the chance of germination, and being deposited in the dung reduces the chance of the seed being eaten by beetles.  Some monkeys in South and Central America eat as many as fifty different types of fruit in a day. carrying some off in their stomachs and dropping others to the ground. In Britain, as part of their diet, foxes will eat various wild fruits, like blackberries; squirrels eat nuts; and mice / voles eat grass and other seeds.  Even invertebrates, like ants, disperse seeds. This may be through the activity of harvester ants, which, like squirrels and other ‘gatherers’,  forage the ground of the wood or forest (collectively) gathering large quantities of seeds and  then transport them back to their nests / colonies.  As they transport the seeds, some get dropped or lost on the way.  Others may be ‘cached’ in or near the nest for later consumption but then are ‘forgotten’ or ignored. Some fruits contain seeds covered with a sticky substance as is the case of Mistletoe. When birds feed on the fruits, the seeds often stick to the beaks of birds.  Then, they may wipe the sticky seed off on a branch;  or it may be eaten and pass out in the bird’s droppings. The ‘glue’ (viscin) around the seed helps fasten the seed in place. Even humans carry seeds far away for plants, for example, by taking an apple on a picnic and throwing the core with its seeds into the bushes. Or seeds may transported in the mud sticking to boots and shoes, or indeed on tractors, cars or other machinery. The loss / extinction of animal species from any given habitat will sooner or later effect the plants.  We are only beginning to fully appreciate the interdependence of life.    The loss of any species - plant or animal - will undoubtedly have unintended and unforeseen consequences which can only be to the detriment of all life on earth.  
February’s Fungi Focus :  Mycophilia and Recording the Fungal Diversity of the United Kingdom

February’s Fungi Focus : Mycophilia and Recording the Fungal Diversity of the United Kingdom

by Jasper Sharp, 17 February, 2022, 2 comments

Fungi seem to be enjoying something of a field day in the popular media at the moment. The 2020 documentary Fantastic Fungi, for all its faults, has fanned the flames of fascination in its subject since its appearance on Netflix last year. Startling stop-motion sequence of mushroom growth also made it into several episodes of Sir David Attenborough’s recent BBC series The Green Planet to highlight the centrality of plant-fungi symbiosis to our living ecosystems. This aspect has been thoroughly detailed in the field of popular science writing, with the highly-recommended Entangled Life: How Fungi Make Our Worlds, Change Our Minds & Shape Our Futures seeing the emergence of its author, Merlin Sheldrake, as the thinking man’s Paul Stamets when it comes to discussions of the Fifth Kingdom. There’s been a 3-part series, Fungi: The New Frontier, broadcast on Radio 4 in January, and a volley of no less than three articles appeared in The Guardian in November 2021: ‘The earth’s secret miracle worker is not a plant or an animal: it’s fungi’ by Giuliana Furci;  ‘A powerful and underappreciated ally in the climate crisis? Fungi’ by Toby Kiers and the aforementioned Merlin Sheldrake; and the announcement of an exciting new project in the report ‘World’s vast networks of underground fungi to be mapped for first time’. [caption id="attachment_36822" align="aligncenter" width="650"] ‘Ectomycorrhizal species like this eye-catching Fly Agaric perform a vital ecological role in our woodland eco-systems.’[/caption] Rather than a focus on a specific species this month, I wanted to offer a few thoughts, observations and suggestions about the hows, whys, and wherefores of learning more about  the world of mushrooms and toadstools.  As these examples demonstrate, the importance of fungi and both preserving and mapping its diversity is rapidly becoming a discussion point in the mainstream media, and as in other areas of nature recording such as butterflying surveying and birdwatching, the Citizen Scientist can play an important role in this. Reporting ones finds on wildlife observation websites such as iRecord or iNaturalist can provide invaluable information that can highlight how common a species is, both regionally or nationally, its favoured habitat, and how this might be affected by factors such as changing land use and climatic conditions. For example, I have covered a number of species in these blogs, such as the Crimped Gill or, more ominously, the Hymenoscyphus fraxineus fungi behind Ash Dieback, that were barely reported a decade ago but are now commonplace. [caption id="attachment_36823" align="aligncenter" width="650"] ‘Crimped Gills have become increasingly prevalent across the British Isles over the past ten years, but are still considered “rare” on the recording website iRecord.’[/caption] There is a major obstacle in all this though, namely that the domain of common knowledge about fungi is tiny compared with other areas of the natural world. Records with accompanying photographs submitted to these wildlife observation websites of birds, insects, molluscs or mammals are often quickly verified by those entrusted to do such things. Fungi recordings can go for many years without confirmation due to the lack of knowledgeable experts capable of undertaking such a task and a consequently mounting backlog of unverified recordings.  [caption id="attachment_36824" align="aligncenter" width="650"] ‘Tiny mushrooms such as this Bark Bonnet (Phloeomana speirea) can be throughout our woodlands all year round, but it often takes incredibly close inspection to confirm your identification.[/caption] Of equal, if not of more concern is the danger of the amateur nature spotter misidentifying and mis-recording their finds. It is better not to submit a record at all than an incorrect one, but as these posts have probably shown, identification is often a tricky business. A number of smartphone apps have arguably compounded the situation. Many fungi require close, even microscopic, examination to identify properly, something an app is never going to be able to do. Most only list the most common species, and no matter how powerful the algorithms powering them, they can often be miles off the mark. None, for example, would be able to distinguish from a photograph alone the difference between a Velvet Shank (Flammulina velutipes), and the other two Flammulina species that have been reported in the UK, Flammulina elastica and Flammulina fennae, nor the common Sulphur Tuft (Hypholoma fasciculare) with the Conifer Tuft (Hypholoma capnoides) or the Brick Tuft (Hypholoma lateritium). You would be on a hiding to nothing attempting to identify one of the numerous crusts of tiny disc fungi using such tools. [caption id="attachment_36825" align="aligncenter" width="650"] ‘A mushroom identification app will tell you this is a Velvet Shank, but only a microscope and a look at the host tree will tell you if it is Flammulina velutipes, Flammulina elastica or Flammulina fennae.’[/caption] Ready-fix solutions like phone apps have the drawback that they discourage people to put in the legwork of poring through identification guides, such as my 'go to bibles', Thomas Laessoe and Jens H. Petersen’s two-volume Fungi of Temperate Europe or Geoffrey Kibby’s 3-volume (with a fourth one pending) equally impressive Mushrooms & Toadstools of Britain & Europe, and of handling, smelling and generally scrutinising your specimens to really get to know your mushrooms.  Accumulating a library of books such as these can be an expensive business, but if you’re serious about getting into the subject, then the investment soon pays off (at least in terms of personal satisfaction rather than financial reward; mycology is alas a woefully underfunded area at the moment). If you are just getting started, there are also websites such as First Nature, and numerous Facebook groups with people willing to help out with your identifications. That is not to say I personally eschew computer-based solutions completely. The ‘Atlas of Danish Fungi’ website, affiliated with Laessoe and Peterson’s publication, has probably the best ‘Name Suggestions’ from a photograph feature I have come across. I have found it very useful when it comes up with a handful of candidate species to check against more thoroughly in the printed guides. [caption id="attachment_36826" align="aligncenter" width="650"] ‘Sulphur Tufts may be one of the most commonly found woodland fungi, but how many records have failed to distinguish it from Conifer Tufts or Brick Tufts?[/caption] What the recent flurry of media interest in fungi highlights, perhaps, is the huge disconnect between the scientific knowledge base and research, and the hive or folk knowledge exhibited by field recorders, many of whom have been at it for decades. In fact, so steep is the learning curve, getting newcomers interested in mycology and overcoming the mythologising and misinformation surrounding the subject is a real challenge. If your curiosity has been piqued and you wish to explore the subject further, firstly I would advise joining the British Mycological Society, and more specifically, contacting your local BMS affiliated Local Fungus Recording Groups, a full list of which can be found here. As the BMS themselves explain, “They are run on a voluntary basis by enthusiasts seeking to share their knowledge of wild fungi and improve your identification skills. Groups offer a welcoming environment for current and new members to enjoy exploring the world of fungi.” Joining up to your local group offers the chance to learn quickly what’s what in this fascinating field, as well as providing a nice social day out, and a chance to make your own contribution to a subject that is in much need of further exploration. [caption id="attachment_36827" align="aligncenter" width="650"] Never underestimate the power of smell - Angel's Bonnets (Mycena arcangeliana) have a distinct whiff of iodine about them.’[/caption]
veteran tree

Veteran trees and veteranisation.

by The blog at woodlands.co.uk, 12 February, 2022, 0 comments

A thousand years ago, significant areas of the country were devoted to wood pasture, that was grazed by livestock.  As time passed, much of this became royal hunting forest - a mixture of woodland, coppice, open land and farms.  As the woodlands were managed (through traditional techniques such as coppicing and pollarding), many of the trees were able to grow to maturity.  They became veteran trees.  Trees such as beech reach maturity after some 200 years, oaks take 400 years and yew 900+.   Such veteran trees can be seen in areas like the Savernake (south of Marlborough) and Sherwood Forests. Saverrnake has veterans like the Big Belly Oak, and Sherwood has the Major Oak.  Sadly, since the nineteenth century many veteran trees and ancient woodlands have been lost due to the expansion of agriculture, housing development and road & rail creation.  Veterans have also been lost from hedgerows, many of which were grubbed out to enlarge fields to allow for increasing mechanisation. As oaks and beeches age so they change, they expand, trunks hollow, cracks and holes appear, heart rot develops and dead wood appears.  Each tree offers a myriad of micro-habitats.  Bracket fungi feed on the dead heart wood, as do stag beetle larvae.   Mosses and lichens live on the bark, attached to crevices that channel the rain down the trunk, bats, woodpeckers and nuthatches inhabit holes. Other birds (like redstarts) nest in the branches and twigs.  The decaying leaf litter beneath the tree offers sustenance to a variety of beetles, and fungi (e.g. oakbug milkcap).  English oaks are associated with more than two thousand species, and more than two hundred are directly dependent on the trees. The loss of so many veteran trees has resulted in an international project to determine if these trees can be ‘replaced’.  It involves a technique termed veteranisation. Younger trees are damaged in order to start the process of decay and ‘ageing’.  The process may include Creating woodpecker-like holes Creating nest boxes for birds / bats Breaking branches Damaging the bark / trunk - to simulate deer / animal damage Inoculation with fungi It is being trialed at some 20 different sites in Norway, Sweden and England.  The project started in 2012 and will run for some 25 years.  It is hoped that such ‘techniques’ could be used to accelerate the formation of veteran trees status with its associated biodiversity. Thanks to Angus for tree jpgs. For further information : https://naturebftb.co.uk/wp-content/uploads/2021/09/Introduction-to-Ancients-of-the-Future-Jamie-Robins.pdf https://www.gov.uk/countryside-stewardship-grants/creation-of-dead-wood-habitat-on-trees-te13 https://www.woodlandtrust.org.uk/media/1798/wood-wise-ancient-trees.pdf  (opens PDF)
Light in the darkness

Light in the darkness

by The blog at woodlands.co.uk, 8 February, 2022, 0 comments

Compared to past centuries, we live in a bright, highly illuminated world where even our nights are bright.  Apart from the lights in our homes and offices, there are thousands of street lights. In many places, the natural 'night time' environment is no more.  This 'artificial light' pollution  has increased significantly in recent times (as indicated by research led by the University of Exeter).    Street lights, especially the newer LED ones, may be affecting various night flying insects.   It is a fact that insect populations in general are under threat from  The loss of woodlands, forests, heathlands and meadows (often to agriculture) The intensive use of pesticides Climate change / extreme weather events Pollution of rivers / lakes (eg. Nitrate / phosphate pollution leading to eutrophication). Now the intensive use of artificial light is thought to be affecting night flying insects, such as moths. Moth populations are in decline, for example, the Buff Arches population, has declined in number by 62% since the 1970s. However, the effects are not limited to moths but also birds, bats and wildlife that feed upon them (or their caterpillars). The UK Centre for Ecology and Hydrology suggests that streets bathed in light may:- Deter nocturnal moths from egg laying. Make the night flying moths ‘easier targets’ for predators (such as bats). Affect the feeding habits of moth caterpillars. A number of investigations have been initiated by CEH, Newcastle University and Butterfly Conservation. The work involved surveys of grassland and hedgerows in southern England (Thames Valley) some lit by streetlamp, others unlit.  The areas that were exposed to night time lights had roughly half the number of caterpillars as compared to the unlit areas; (the hedgerows reduction was 47%, and 33% in grass margins).  In another investigation, LED lighting was set up in fields, caterpillars numbers in such fields were reduced.  It would seem that night time light affects the feeding behaviour of caterpillars. Quite how and why is to be determined. LED lights are being using more and more, as they are brighter, cheaper to run and more energy efficient. LEDs emit more blue light than older forms of lighting. It is likely that the impacts of light pollution on night flying insects will increase. This, in turn, will effect of other species, such as hedgehogs which need many, many caterpillars to feed themselves and their young.  The loss of insects, such as bees, ants and beetles is occurring at a worrying rate, indeed faster than the loss of mammalian, avian or reptilian species.  The loss of insects has far reaching consequences for ecosystems - as they provide food for many vertebrate species and they acts as pollinating agents for many flowers and crops.   https://youtu.be/Rnsz7JtBmJw
Woodland web updates 14.

Woodland web updates 14.

by The blog at woodlands.co.uk, 3 February, 2022, 0 comments

Reports on pollinators. Research by workers at the University of Reading and the Centre for Ecology and Hydrology has shown that various ground level pollutants (nitrogen oxides and ozone) have significant effects on the pollinating activities of bees, moths, butterflies and hoverflies.  The number of flower visits by these insects declined, as did the level of pollination and seed production. The University of Göttinggen has published a study that bumblebees need a diverse pollen diet, collected over a variety of habitats.  A varied pollen diet contributes to better colony growth, more offspring (particularly young queens).  It also helps offset the effects of infestation with wax moth larvae.  Wax moth caterpillars feed on nest debris, but as they grow they switch to feeding on the food stores and even grubs / larvae, effectively destroying the nest. Recent work by an Irish postgraduate student on insect pollinators in Dublin suggests that a “less is more’ approach  might be effective when it comes to natural green areas in cities.   Emma King looked at the pollinators present in Areas of planted meadows or sown with wild flower mixes. Areas with reduced mowing that were allowed regenerate naturally. She found that though insects like bumblebees and hoverflies were more frequently recorded in planted meadows, statistically there was no significant difference in the numbers; and the community of pollinators was similar in both types of green areas.  The advantage of allowing green areas to develop naturally is that it reduces labour and material (seeds) costs.  They may take a bit longer to establish a diverse flora but they will offer resources to pollinators. Such green spaces promote habitat connectivity within the urban environment. Sunflower update Work by staff at the University of British Columbia has revealed that sunflowers (like many other flowers) helps bees to visit by invisible (to us) ultra-violet patterns - usually in the form of a ‘bulls-eye’.   They observed that sunflowers growing in drier conditions had flowers with larger UV ‘guides’.  Furthermore, it was found that a particular gene was responsible for the nature of the bulls-eye pattern, and this gene was also associated with the production of flavonol compounds.   Quite how the gene and the production of flavonols is related to the capacity of sunflowers to retain water is not known. [Full details of the work of Dr M Tedesco et al here].
January’s Fungi Focus – Netted Crust (Byssomerulius corium)

January’s Fungi Focus – Netted Crust (Byssomerulius corium)

by Jasper Sharp, 24 January, 2022, 0 comments

Crust fungi is a generic term referring to those species that grow flatly in patches that spread out against their substrate, typically on dead wood such as logs (on the side and underneath), or on stumps and fallen branches, although a merciful few may appear as unwanted guests in domestic settings, like the notorious Coniophora puteana (“Wet Rot”). Examples of crust fungi can be found throughout the whole year, but a few species are particularly noticeable around the winter months, when there’s little else of apparent interest around. The term ‘resupinate’ is often used to describe these types, which means that the fertile surface, or hymenium, from which they release their spores faces outwards, unlike conventional cap-and-stem types, where the hymenium is spread out over the gill area and faces downwards from beneath the cap.  With many of these species also forming shelves, with their uppermost margins projecting horizontally depending on the orientation of their substrate, some often find themselves described also as bracket fungi: indeed, a Facebook group dedicated to their identification, recording and photography is called Crust Fungi and Polypores. The most salient example is the Hairy Curtain Crust (Stereum Hirsutum), which is a common sight in broadleaf woodlands in January and February. (Note however that the terms ‘resupinate’ and ‘bracket’ are just descriptive categories which don’t have any meaning when ordering the various species in strict biological terms.) Crusts don’t have gills, but the hymenium can either be totally flat, in species described as corticioid, or it can be covered in pores, as for example species like the Cinnamon Porecrust (Fuscoporia ferrea). They also might be covered in warts, wrinkles, teeth or fine hairs that you might need a hand lens to discern properly. Different species can be a variety of colours (including salmon pinks, vibrant yellows and fiery oranges to the more nondescript white and not-quite white types), while other distinctive features might be their toughness, thickness, and how easy they are lifted from their substrate. I’ve covered a number of these different forms in more detail in previous posts on Elder Whitewash (Hyphodontia sambuci) and my rare find of Antrodia carbonia, as well as those linked already in this post. Identifying crust fungi can be a daunting business, with literally hundreds of species in the British Isles alone. Most might be happy to pass them by unnoticed. After all, they have no culinary value. This makes them a much understudied groups of fungi among amateur naturalists. For those that care to take a closer look however, the can do show up some very attractive aspects. The Netted Crust is one such example. It is very prevalent during the early part of the year and relatively easy to recognise. From my experience, it tends to grow on, and indeed along, fallen branches and twigs that are quite thin, with the hymenium facing down but the margins of the fruitbody projecting outwards in long extended wings, a bit like a flatworm.  On thicker branches, it might also form brackets.  The flesh is white and soft: it is easily torn and removed from the branch, although with age becomes tougher, with the underside hymenium also tinging yellow-brownish. The upper side, if looked at closely is covered in fine downy hairs, which you might need a hand lens to see properly. It is, however, the underside where this species really shows off its most magnificent aspect. It is covered in a much more discernible intricate pattern of low, irregularly shaped grooves and ridges, a surface that mycologists refer to as ‘meruloid’ – hence the ‘merulius’ part of its Latin name, Byssomerulius corium, and the ‘netted’ part of its common name. The Netted Crust is one of the most commonplace and readily identifiable of the crusts, and as such provides a wonderful gateway into looking more closely at this surprisingly fetching domain of fungi. As ever in the woodlands, it’s a case of look closely and you’ll find a whole new world of interest, and undoubtedly one of the best points about resupinate fungi is that you can find them across the entire year.  
great tit

Food for thought?

by The blog at woodlands.co.uk, 16 January, 2022, 0 comments

It is estimated that each year UK households spend some 250 million pounds on bird food.  This amounts to some 150,000 tonnes of suet pellets, fats balls, peanuts, sunflower seeds etc - on offer (in feeders of varying complexity*) in urban and sub-urban gardens.  These offerings are a marked contrast to the occasional kitchen scraps that were placed on home-made bird feeding tables some 50 years ago.  The question has recently been raised as to whether this is a good thing.  In 2019, research by the British Trust for Ornithology indicated that this provision of food can affect bird communities in the United Kingdom.   For example, species that rarely visited gardens in the past, have become common visitors. Now, researchers at Manchester Metropolitan University have suggested that these extensive offerings of food might be affecting the ecological balance between different species. Blue tits and great tits are regular feeders in gardens, and they appear to benefit from this provision.  Blue tits tend to be be quite dominant in terms of their interactions with other birds - whether quarrelling over food or nest sites.  Consequently, species like willow tits and marsh tits tend to ‘lose out’ in such altercations.  Certainly, willow tits miss out to blue tits in the competition for nesting sites.  Another species affected is the pied flycatcher.  This is a summer visitor, spending the winter in West Africa.  It, too, is in competition with great tits for nesting sites.  The provision of food for resident bird populations may tip the balance against summer migrants, like the flycatcher. The change in feeding patterns of some birds may of course be associated with the expansion of farming over the decades and the consequent loss of natural foods such as fruits, seeds, nuts and berries - from  hedgerow flowers and shrubs.  This may contribute to birds visiting gardens more often.  It may be that our desire to help garden wildlife needs more thought as to the type of ‘help’ that is offered.  This could involve allowing our roadside verges and gardens to be ‘wilder’, with less frequent moving of lawns / grassy areas, more ground cover, planting native trees (like crab apples, hawthorn), less weeding, allowing seeds and fruits  (eg. rose hips) to form, which would encourage insects / spiders Consequently more natural resources would be available to birds and only in harsh times would supplementary materials be needed.   NB : it is essential that feeders are regularly cleaned so that disease is kept to a minimum [e.g. Trichomonosis  caused by the protozoan parasite Trichomonas gallinae] . Remember later this month (28 - 30th January), there is the Big Garden Birdwatch, organised by the RSPB. For further information, click on the image below:-   A footnote : As a species, we have not always been kind to birds.  A recent paper from Tel Aviv University details how humans have been responsible for the extinction of hundreds of birds species (over the last 50,000 years).  They have listed some 469 species of birds that have been lost, though the true number is probably considerably higher.   Many of these extinctions occurred in a short time frame and  were due to either : The hunting of birds (and their eggs) for food or The killing of birds by animals (rats etc) that human expansion brought to islands / countries. Many of the extinct species shared a number of features : Most lived on islands Many were large or very large birds (e.g. the dodo on Mauritius - that provided humans with significant quantise of high quality protein. (A similar fate befell certain large lizards and turtles). Many of the birds were flightless and could not escape their hunters.  
Promoting wildlife in gardens

Promoting wildlife in gardens

by The blog at woodlands.co.uk, 7 January, 2022, 0 comments

Reports in the papers and electronic media have made us aware that many forms of wildlife are under threat.  This threat is wide ranging - from the destruction of tropical rain forests, coral reefs, the loss of species-rich meadows, the insect apocalypse - indeed where does this loss of plant and animal species end? One small positive observation amidst the doom and gloom is the findings of The Biodiversity in Urban Gardens project [BUGS] at the University of Sheffield.  The original study focused solely on Sheffield and finished in 2002, but  it was then extended to five cities across the U.K.    Professor K Gaston who led the study is now working at the University of Exeter.  The original study was important in that it revealed within Sheffield city, there was 33 km2 of wildlife habit was available within the city 360000 trees in the city limits 45000 nest boxes 25000 ponds and  50000 compost heaps Furthermore, there were in excess of a thousand plant species (flowering plants, ferns and conifers) and a diverse collection of invertebrates (bumblebees, hoverflies, beetles and spiders).  Whilst the diversity was in no way comparable to that of an ancient woodland (with veteran oak trees etc) or indeed of wetlands, it is significantly better than that found on farmland - particularly in those areas where the farming is intensive and characterised by monocultures (e.g. oil seed rape extending to the horizon).  Farmland now occupies some 70% of the landscape. Gardens, parks and urban areas are therefore an important resource for wildlife.  It is important as house building proceeds, on both brown and green field sites, that the associated gardens continue to provide ‘sanctuaries’ for wildlife, for example, by avoiding large areas of hard standing for cars (which also encourage  rain / water run off - which can overwhelm the drainage systems).  Professor Gaston has emphasised the importance of ‘dimensional complexity’ in gardens; that is a variety of trees, shrubs and plants of different shapes and sizes.  This provides a range of different niches / habitats for wildlife.  Of course,  in gardening to promote wildlife, there are the additional benefits (for householders) of physical and mental well-being.   Remember later this month, there is the Big Garden Birdwatch, organised by the RSPB. For further information, click on the image below:- [caption id="attachment_36525" align="aligncenter" width="670"] Ladybird 'stalking' aphids[/caption]

« Previous PageNext Page »