Woodlands.co.uk

Blog - Flora & Fauna

Pine martens and red squirrels.

Pine martens and red squirrels.

by The blog at woodlands.co.uk, 2 August, 2023, 1 comments

The Gloucestershire Wildlife Trust has spearheaded an initiative to introduce Pine Martens to the Forest of Dean. Some 35 Pine Martens have been released into the forest, between 2019 and 2021.  They have produced litters each year, and there is now thought to a population of some 60 animals.  Pine Martens have two or three ‘kits’ (young) a year.   At one time, Pine Martens were common across the U.K. but the loss of their natural habitat (forest and woodlands) combined with hunting has reduced their presence to remote areas in the North and West. Now, they are a protected species; it is illegal to kill, disturb, sell or possess a pine marten.  Scotland’s population is estimated at 3700 adults.  In the Galloway Forest, the numbers of adults and young are being monitored with thermal imaging cameras.   Pine Martens enjoy a broad diet, ranging from small mammals, insects, eggs and wild fruits - eating that which is most abundant.  They will prey on grey squirrels, and there is the possibility that this may help red squirrels re-establish themselves in more southerly areas.  Forestry and Land (Scotland) have placed artificial pine marten dens in areas where there are red squirrels.  The boxes (with wood shavings to encourage nesting) are placed some 4 to 5 metres off the ground.  The Yorkshire Arboretum has just constructed a special enclosure and introduced a small population of red squirrels.  The enclosure is designed to keep Red Squirrels in and Grey Squirrels out. Two of the females have just produced four kits (young). The Gloucestershire Wildlife Trust is also involved in the Severn Treescapes project.  This is a scheme that involves significant tree planting to link the Wye Valley with the Wye Forest - to create a significant corridor of woodlands, hedgerows, orchards etc across the counties of Gloucestershire, Herefordshire and Worcestershire.   Woodlands TV has a video about the Pine Marten : [embed]https://youtu.be/20RS1M-U008[/embed]
Parts of a tree (3): the leaf

Parts of a tree (3): the leaf

by The blog at woodlands.co.uk, 21 July, 2023, 0 comments

Across the world there may be three trillion trees. A mature tree may have 200,000 leaves, so there are a lot of leaves in the world - not counting those on herbaceous plants, grasses and shrubs.  The broad structure of a leaf is outlined here in woodlands.co.uk Tree ID. The leaf is the site of photosynthesis, providing food for the tree, and oxygen for us.  As the leaf is rich in nutrients, it is a source of nutrition for many organisms - other than the tree.  Oak trees are said to support over 2000 species, ranging from mammals, birds, beetles, spiders, fungi - through leaf-based food chains.  Leaves also support many micro-organisms through the detrital food chain (the decomposition of leaves in the litter layer and the soil). We do not eat many tree leaves, though some do make their way into our diet.  For example, the evergreen shrub Camellia sinensis is widely grown in many parts of the world for the production of tea.  The young leaves can be picked in spring and dried to make tea.  Leaves of other plants are used in various herbal infusions or for flavouring such as bay, sage, oregano, thyme etc. The fact that leaves are attractive to so many herbivores means that trees (and other plants) take measures to protect themselves. Some measures are physical - such as spines, thorns, prickles etc.   But when is a thorn a thorn, rather than a spine or a prickle?  These terms are used casually and interchangeably.  Botanically speaking, they are all ‘spinose structures’ that is hard, rigid extensions or modifications of leaves, roots, or stems - all of which have sharp, stiff ends and all have the same role - to deter animals from eating the plant that bears them.  Plants that bear sharp structures that deter herbivory are termed spinescent.  There are differences between these various ‘structures’. thorns are derived from shoots (they may be branched or not, may or may not have leaves). The thorns of Hawthorn (Crataegus monogyna) can bear leaves. spines are derived from leaves (they may be formed from all of the leaf or just part of it and like thorns they have vascular tissue*) prickles are derived from the epidermis (the outer layer of cells of a stem, root or a leaf).   Prickles may be found almost anywhere on a plant and they do not have vascular tissue inside.  Wild lemon and lime trees (Genus: Citrus) have spines, which protect young plants and indeed the fruits. The defences on roses are often described as thorns, but they are prickles, as they do not have vascular tissue (xylem and phloem) inside them. Sometimes, the leaf epidermis forms smaller, ‘simpler’ physical barriers called trichomes.  These are outgrowths of epidermal tissue but generally consist of only a few cells which form a defence against small insects.  Equally, a thick,  waxy cuticle on a leaf may be something of a deterrent to smaller insects. Leaves sometimes form ‘teeth’ on the leaf margins and leaf apices.  A classic example of this is seen in Holly.  Holly leaves that develop at ground level are wavy, with large triangular ‘teeth’, bearing spines.   As the tree grows and holly can reach up to 80 feet,  the leaves become less spiny. The spines offer protection against grazing animals at the lower levels but are no longer needed when the trees reach a certain height. While physical defences such as spines, prickles and trichomes can deter various herbivores,  chemical defences may also be deployed.  Chemical defences can take different ‘forms’, such as  [caption id="attachment_28705" align="alignright" width="300"] Oozing latex - Euphorbia[/caption] tannins and phenolics. These create an bitter taste, they are complex polyphenols built from several phenolic molecules. Tannins are common in leaf tissues - particularly in the cells on the top surface of a leaf.  Scale leaves of buds are often particularly rich in tannins, reducing  the palatability or "tastiness" of the tissue thereby offering protection from herbivores.  Alkaloids are again usually bitter tasting compounds -, many of them derived from amino acids. Glycosides, as the name suggests, contain a sugar that is joined to another chemical, such as cyanide (as seen in bitter almonds (amygdalin). Another possibility is that leaves may emit chemicals (aka VOC’ volatile organic compounds, scents, aromas) that deter insect visitors, or if a leaf is under attack by a insect pest then a leaf may release a VOC to ‘warn’ nearby plants of the attack so that they produce chemicals that make the leaves distasteful. How long a leaf lives is incredibly variable, it may be eaten within days of its formation, it may last till autumn or it may last for years.  Many trees of temperate climes are deciduous, that is they shed their leaves come the shorter days of autumn.  The advantage of this is that the tree offers less resistance to the winds of winter, so is less likely to suffer physical damage (also true of snowfall).  The tree enters a state of dormancy until spring.  If in spring the tree produces flowers before the leaves (like Blackthorn) this  can facilitate wind dispersal of the pollen.  However, losing leaves each year means that their nutrients are either lost or have to be moved out and stored somewhere else.  Having longer lasting leaves means that nutrients are retained, which is a distinct advantage in a nutrient poor, harsh environment.  The longest lived leaves are found in a plant of the Namib Desert : Welwitschia.  This plant has two leaves throughout its life of some two thousand years.  The leaves may reach a length of 4 metres, the ends die or get worn away but the base generates new tissue.   Welwitschia is a type of Gymnosperm. Image (with thanks) by Nhelia from Pixabay  
Where do butterflies come from?

Where do butterflies come from?

by The blog at woodlands.co.uk, 14 July, 2023, 2 comments

An obvious answer to this question would be - caterpillars.  But when did butterflies first appear?  There are now some 160,000 species of moths and butterflies -worldwide.  Seemingly, they appeared some 100 million years ago  - in North America.  They evolved from nocturnal moths in the period when flowering plants were undergoing a major expansion (in the Cretaceous period).  Butterflies may have become diurnal to avoid predation by bats, or it may have been to take advantage of nectar production and availability [using the proboscis]. The butterflies and their caterpillars were able exploit the diverse range of food resources that these ‘new’ plants offered.  Butterflies moved out from North America to South America and then on to other parts of the world, though they probably did not arrive in Europe until some 17 million years ago. The evolutionary expansion of the butterflies has been investigated by researchers at the University of Florida; they analysed the genetic makeup of many species (from 90 countries).  They were able to build up a picture of the relationships between the various groups of butterflies and also determined their evolutionary point of origin.  They also catalogued the plants eaten by the caterpillars and it was found that some two thirds of butterfly caterpillars feed on plants from the legume family (the Fabaceae - peas and beans).  It is probable that the first butterfly caterpillars also fed on these plants. Research at the Georgetown University in Washington DC suggests that larger species of butterfly are ‘coping’ better with higher temperatures, associated with global warming.  Bigger wings seem to offer a greater range of movement and the opportunity to find new and suitable habitats.  Smaller butterflies are not faring so well.  The study involved an analysis of the range of some 90 North American species between 1970 and 2010, during which period the monthly minimum temperature increased by 1.5oF. Others have analysed the butterfly collections at the Natural History Museum, using digital technology.   The Natural History Museum’s British and Irish butterfly (and moth) collection is probably the oldest, largest, and most diverse of its kind in the world; some of the specimens date back over a hundred years The measurements of the various specimens were paired with the temperature that the species would have experienced in its caterpillar stage. It was found that for several species that the adult butterfly size increased as the temperature increased (during late larval stage). So, it may be that we will see a gradual increase in butterfly size as temperatures increase with global warming. Join the Big Butterfly Count ? Between Friday 14th July and Sunday 6th August , the big butterfly count will take place.   For full details visit : https://bigbutterflycount.butterfly-conservation.org/about Thanks to Angus for images.
Bumblebee pollen collecting

Bumblebee pollen collecting

by The blog at woodlands.co.uk, 10 July, 2023, 2 comments

Bumblebees (and bees) collect nectar and pollen.  Pollen is a vital food, used in the various stages of a bumblebee’s life. In Spring, newly emerged queens feed on pollen, then it is used to feed its their sister workers. The workers, in turn, take over the feeding of the colony (the larvae and future queens). If not enough pollen is collected, then the colony will not thrive, which can have significant long term effects.  Bumblebees are already facing many threats (from habitat fragmentation, agrochemicals and disease). The collection of pollen is a demanding process, and bumblebees will forage over a wide area.  They start their pollen collecting activities earlier than many insects as they can warm themselves up by ‘shivering’, that is, rapid muscle contractions which generate heat, warming the insects up ready for flight.  Bumblebees can fly in colder conditions and at higher elevations than many other insects. However, research at North Carolina State University has shown that the North American bumblebee (Bombus impatiens) can overheat when exposed to high temperatures (circa 42oC plus).  So,  if a bee is carrying a significant load of pollen and it is a hot day, its muscles have to work harder and the bee is at risk of overheating. A bumblebee loaded with pollen may be 2oC hotter than an unladen bee; it may be reaching its ‘thermal limit’ - a temperature at which its organs are damaged.  Climate change means that many parts of the world are now experiencing extreme weather events, when temperatures can reach into the forties. [caption id="attachment_39978" align="aligncenter" width="675"] Bumblee leaving foxglove[/caption] Increasing temperatures could affect the foraging activities of bumblebees in a significant way - affecting how much pollen is collected and how much pollination takes place.  If pollen collection is reduced then colony development is affected and so population numbers will be affected.  Bumblebees are key pollinators in natural and agricultural systems, and if their numbers decline there will be ecological and agricultural consequences.  
Deer and Scotland’s temperate rain forest.

Deer and Scotland’s temperate rain forest.

by The blog at woodlands.co.uk, 6 July, 2023, 1 comments

Scotland’s west coast has a number of temperate rain woodlands / forests. They are quite rare. The remnants of oak, birch, ash, native pine and hazel woodlands are small and isolated from each other. They are noteworthy for the diversity and richness of the bryophytes (mosses and liverworts) and lichens; found in abundance on the trees, rocks and on the ground.   Sadly, such woodlands have been in decline for some time. In the past, this woodland covered large areas of the west coast of Scotland, but much has been lost over the last two thousand years.  These woodlands / forests now cover a small area, just under 5% of the land. Factors that have contributed to the decline and loss of this woodland include:- mismanagement,  overgrazing by sheep and  invasion by non-native species [such as Rhododendron ponticum]. According to recent study by Scottish Environment LINK, deer now represent a considerable threat to the woodlands.  Whilst deer are part of woodland ecosystems, when their numbers increase beyond a certain point then they become a significant problem.  Deer numbers are now at historic highs in Scotland/  Money has been made available to manage surging deer populations, for example, through the provision of deer fencing.  However, the report considers that such fencing is “both expensive and often ultimately ineffective”.  More needs to be done if deer damage is to be reduced and allow regeneration of the woodlands. Developing a community approach to deer stalking and management will be important, combined with the use of technologies such as thermal and drone surveying. A greater focus on the management of roe and sika deer, combined with the removal of Rhododendron ponticum will be needed if the woodlands are to flourish and expand. see also : https://www.thescottishfarmer.co.uk/news/23637346.soaring-deer-numbers-see-new-powers-land-managers/   [caption id="attachment_39688" align="aligncenter" width="675"] Rhododendron ponticum, these plants were growing near the River Tay.[/caption] visit https://www.instagram.com/woodlands.co.uk/?hl=en  
Flowering plants and pollinators

Flowering plants and pollinators

by The blog at woodlands.co.uk, 3 July, 2023, 0 comments

Plants have existed for hundreds of millions of year - as algae, mosses, liverworts, ferns but flowering plants only appeared about 140 million years ago. The exact timing of their appearance is a matter of some debate (see article) They have been a massive evolutionary success, there are perhaps 300,000 to 400,000 species world wide.  They reproduce using pollen.  This is used to fertilise the ovules and produce viable seeds.  Most plants rely on insects to transfer this pollen to the ovules, indeed over 80% of flowering plants have relied on insects for this service.  To this end, flowering plants (Angiosperms) have evolved a number of inducements to attract insects : colour, scent and nectar. When we think of pollinators, we generally tend to think of bees, bumblebees, hover flies.  But when flowering plants first evolved, fossil evidence suggests that many of these flowers were quite small so it is probably that the first pollinators were also quite small, and hence able to access these small flowers.  The first pollinators were probably small flies, midges or beetles (more than 77,000 beetle species are estimated to visit flowers).  Quite when bees (and their pollen collecting activities) evolved is not known.   A recent analysis of the "family tree" of the families of flowering plants indicates when different plant families evolved and when various forms of pollination emerged.  Insect pollination is / was clearly the most common method of pollination,  and was probably the first means of pollination.  This analysis also indicated that other means of pollination (involving small mammals, birds, bats) have evolved several times, as has wind pollination.  Wind pollination seems to have evolved more often in open habitats and at higher altitudes , whereas animal pollination is associated with closed canopy tropical forests. The pollen of insect pollinated flowers is significantly different to that of wind pollinated species.  Flowers that are insect pollinated tend to produce pollen that is heavy, 'sticky' and protein-rich.   Pollen is an important constituent of the diet of many insects.  Wind pollinated species by contrast produce large quantities of pollen, the grains being light and small.
Professor Goulson on allotments, gardens and bees.

Professor Goulson on allotments, gardens and bees.

by Angus, 21 June, 2023, 3 comments

I recently attended the National Allotment Society AGM, where the keynote speaker was Professor David Goulson.  His main academic studies focus on the threats to bees, bumblebees and other insects. He is based at Sussex University.  Back in 2006, he founded the Bumblebee Conservation Trust; a charity which has grown to some 12,000 members.  In his talk at the meeting, he made the following points : He loves allotments because they capture carbon and are rich in biodiversity.  They produce a lot of food.  Typically producing some 10 tonnes / hectare whereas farming productivity is about 3 tonnes per hectare.  The record on a 1m2 in an allotment is 10 kg, which is the equivalent of 100 tonnes / hectare.  Allotments not only produce good food for healthy eating, but people get good exercise through their gardening activities.  A study shows the ‘over-60s’ with allotments have longer life expectancies [controlling for other variables]. [caption id="attachment_40124" align="aligncenter" width="675"] A bee at risk of extinction.[/caption] There are over 300,000 allotment plots in the UK and some 90,000 people on waiting lists.  More allotments could help counter poor health and cut NHS costs. We should turn our cities, towns and villages into a network of nature reserves - essentially a form of urban rewilding. Gardens are a vital part of this, as there are some 400,000 hectares of them in Britain.   Prof Goulson is really keen on less mowing, more ponds and no pesticides. Interestingly, France banned pesticide use in public and urban areas, such as parks, back in 2014 - it is an example that we should follow. Even pet flea treatment is damaging to insect life.  The strength of the doses used means that the chemicals can pass into the environment - to grass, rivers, canals and pools.  Sadly, now 8% of gardens have some plastic lawns, and plastic hedges (and Wisteria !).  Plastic makes him despair.Plant diversity in pavements should be celebrated. Wild flowers / weeds are sources of pollen & nectar for pollinators.  Verges should be nature reserves.  A Scottish "On the Verge" group stopped councils mowing 8x a year and planted a seed mix to transform verges in their area.  Councils should mow less.  Some people may object, so people should strengthen their Council’s hands by writing to them and praising them for no-mow-May-type efforts.  The Buzz Club - has been set up, this is a citizen science project to see what works best for insects. There are lots of short films on his youtube channel . Bees and other pollinators need help.  He suggested lots of ways to help them, for example,  drilling holes in logs for bug hotels.  You can follow Prof Goulson on Twitter or Facebook. [caption id="attachment_40132" align="aligncenter" width="675"] Bumblebees 'enjoing' a small clump of poppies[/caption] [caption id="attachment_40129" align="aligncenter" width="428"] urban herbicide use[/caption]  
Parts of a tree (2): Bark

Parts of a tree (2): Bark

by The blog at woodlands.co.uk, 14 June, 2023, 1 comments

As stated in the previous post, bark is a mixture of living and dead cells.  Cork cells abound, especially in trees like the cork oak, where the cork may be regularly harvested.  This may be used for flooring, insulation and yes - corks for wine bottles. However, bark is a source of many things.  From early times, bark from trees like alder, buckthorn, oak, birch etc were used to make dyes for clothing.  Material from the inner bark of some trees (e.g. lime, willow, mulberry) was a source of fibres for clothing and cordage (string / yarn). Herbalists also found a use for the bark of certain trees.  Infusions of willow were used to treat fevers, the ‘ague’, rheumatic aches and pain.  It contains salicin, which the body converts to salicylic acid, an early 'form' of 'aspirin'. Interestingly, Nicholas Culpeper, in The Complete Herbal (of 1653) gives a number of uses for willow, including to staunch wounds, but does not mention pain control. The bark of the Cinchona [Jesuit’s bark] gave quinine - a treatment for malaria [caption id="attachment_39935" align="alignleft" width="300"] Amber[/caption] When a tree, like a pine, is injured (through storm damage or insect attack), the bark can produce resin - a sticky and viscous liquid.   The resin is produced in resin ducts present within the bark tissue, though the ducts may be present in deeper tissues. Research has shown that ponderosa pine trees that had more (and wider) resin ducts survived drought and bark beetle attack better.  The resin can harden and help seal wounds . Many resins contain terpenes, such as alpha-pinene and limoneme.  The resin from pine and other conifers can under special circumstances be converted into amber.  Sometimes, the resins produced can be fragrant. Trees of the genus Boswellia and Commiphora produce a aromatic resin that gives frankincense and myrrh respectively.  Both are produced by the wounding of a tree so that its resin seeps out.  Both may be used in the making of incense. Another bark exudate comes from certain species of Acacia - Gum arabic, which forms from the hardened sap (adjacent image).  Acacia species belong to the ‘Bean’ family (Fabaceae).  The gum is collected from trees, mostly in Sudan and the Sahel.  Gum arabic is a mixture of glycoproteins and polysaccharides.  The polysaccharides are constructed from the sugars arabinose and galactose. It is soluble in water and edible, and has a number of uses in the food and pharmaceutical industries. Tapping or wounding the bark of different trees can result in various fluids being released, for example, latex.    White or yellow latex is produced by the rubber tree (Hevea brasiliensis).  The latex is found in special vessels within the bark - laticifers. The process of tapping rubber trees is outlined in some detail here.   Latex production is not confined to woody trees, small herbaceous plants like dandelion and spurge can produce a white, milky latex (as can the opium poppy). [caption id="attachment_39984" align="alignleft" width="300"] Euphorbia latex[/caption] The latex produced by some members of the Spurge family can cause burning pain, inflammation or even blistering - for example that of the Pencil tree.  Such toxic saps most likely evolved to deter animals from grazing. Sometimes, a watery sap may be collected from the bark.  This is the case with Birch.  Sap may be collected (tapped) in early Spring, when sugars and other materials are being mobilised for growth, leaf production etc.  Sap may be collected later but is said to then have a bitter taste.  The sap is an interesting ‘cocktail’ of amino acids, protein, sugars (glucose & fructose), betulinic acid, proteins, vitamins C & B, and minerals.  It is used to make a much favoured drink in Northern Europe and should be consumed within days of collection.  Birch trees are quite sensitive to tapping. Not watery, but very sugary is Maple Syrup. Maple trees are tapped by drilling holes through their bark and into their trunks. Starch is stored in the trunks and roots before winter, it is then converted and mobilised in late winter / early Spring. The collected  sap (through tapping) is then heated to produce a concentrated syrup. Thanks to Montemari at Pixabay for image of gum arabic

« Previous PageNext Page »