Woodlands.co.uk

Blog - pollinators

woodlands web updates 16

woodlands web updates 16

by The blog at woodlands.co.uk, 30 April, 2022, 1 comments

LASI is the Laboratory of Apiculture and Social Insects at the University of Sussex. It is particularly noted for its research work on bees. Recently, Dr Balfour and Professor Ratnieks have published a study on the rôle of certain 'injurious weeds'.   Five of our native wildflowers fall into this category : Ragwort (Jacobaea vulgaris), Creeping or Field Thistle (Cirsium arvense), Spear or Common Thistle (Cirsium vulgar), Curly Dock (Rumex crispus), and Broadleaved or Common Dock (Rumex obtusifolius).  They compared the ragwort and the thistles with plants like red clover and wild marjoram (often encouraged / sown on field edges etc).. They found that the 'injurious weeds' were particularly 'effective' at attracting pollinators, not only did they they attract greater numbers of pollinators than clover etc, but also a greater range of pollinator species.  This was ascribed to the open nature of their flowers and their generous nectar production.  This brings into question the control of species like the ragwort, as it is clearly important to pollinators (as are some 'botanical thugs' - like brambles).  Ragwort contains chemicals that are toxic to livestock, causing liver damage; it has been blamed for the deaths of horses and other animals. At the Smithsonian, Kress and Krupnick have analysed the features of some 80,000+ species of plants to see how they might fare in the Earth's changing climate (the Anthropocene).  This may seem like a large number of different plants, but represents approximately only 30% of the known species of vascular plants.  There is not enough information of the remaining species to make a reasonable guess as to how they might react to climate change;  a reflection on how little we actually known about our 'botanical resources'.  Sadly, they conclude that more plants will lose out than win.  Particularly at risk of extinction are the Cypress family (which includes the redwoods and junipers) and  the Cycads, whereas black cherry might be a winner. As was reported previously in the woodlands blog, there is a difference between the leaves of the redwoods found at the top of the tree and those lower down.  Those at the top are small, thick, and fused to the vertical stem axis; this fusion of leaf and stem creates a relatively large volume of tissue and intercellular space that can store water. The leaves in the lower part of the crown by comparison are large, flat and horizontal to the stem axis.   Now scientists as the University of California (Davis) have further investigated the role of these leaves.  They now believe that the different leaf forms help explain how the exceptionally tall trees are able to survive in both wet and dry parts of their range in California.  In the rainy and wet North Coast, the water absorbing leaves are found on the lower branches of the trees.  In the Southern part of the redwoods range, the water collecting leaves are found at a higher level to take advantage of the fog (and rain, which occurs less often).
Pollinator preferences

Pollinator preferences

by The blog at woodlands.co.uk, 4 April, 2022, 0 comments

It would seem that pollinators have ‘favourite plants’.  Research centred on the National Botanic Garden of Wales has looked in some detail at the foraging habits of bees, bumblebees, hover flies and solitary bees - our most important pollinators. Dr Abigail Lowe identified the plants that the insects were visiting by analysing the DNA from pollen grains on their bodies (a process known as DNA barcoding). It is clear that the ‘preferences’ of the insects change with the seasons and indeed the availability of particular flowers.  In Spring, nearly all the pollinators frequent buttercups, lesser celandines and dandelions (all brightly coloured yellow flowers).  Come the summer, honey bees and bumblebees tend to favour thistles, knapweeds and brambles, whilst hover flies may be seen on hogweeds and angelica plus thistles and knapweeds.  In autumn, the bumblebees can be see visiting asters (Daisy family flowers) and brambles. Full details of her work can be found here : https://botanicgarden.wales/press/plants-for-pollinators-new-dna-research-reveals-fascinating-insights-into-the-plants-used-by-bees-and-hoverflies/ There are also suggestions on how to help pollinators in your garden, such as encourage buttercups and dandelions by reducing mowing (in the Spring) plant late flowering daisy type flowers encourage some bramble (you might get some blackberries, in return) reduce the use of chemicals (especially pesticides and herbicides) hoverflies can be encouraged by damp, wet areas and rotting wood and these suggestions would also work in a woodland.   [caption id="attachment_38320" align="aligncenter" width="700"] Marmalade hover fly[/caption]
Drought and pollinators

Drought and pollinators

by The blog at woodlands.co.uk, 30 November, 2021, 0 comments

Climate change is affecting all parts of the world, from the melting of the ice caps in Antarctica, to droughts in Australia and California.  On a more local level, we may see changes in our rainfall pattern.  Certainly for many parts of the UK, it has been a very dry start to the Spring, coupled with some very cold nights. Cold and dry weather affects plant growth in significant ways.  Warmth is needed for a plant’s enzymes (catalysts) to work, speeding up reactions and allowing growth.  Similarly, if water is in short supply, growth is stunted; plants do not realise their full ‘potential’. They are smaller overall as is the number and size of flowers that they produce.  Flowers attract visitors by colour, size and scent; or combinations thereof.   Smaller and fewer flowers, in turn, have ‘knock-on effects’ for their pollinators - bees, bumble bees, hoverflies etc. The effects of drought on pollination has been recently investigated by researchers at Ulm University in Germany.  They studied the effect of drought on field mustard (aka Charlock) : Sinapsis arvensis.  This is an annual plant that is to be found in fields, waysides and field margins across Europe.  It has bright yellow flowers, with four petals.  It is visited by many different pollinators (it cannot self-pollinate).   The researchers compared the number of visits by bumblebees (Bombus terrestris) to drought-stressed plants to well-watered ones.  The data showed that as the number and size of the flowers decreased so did the number of pollinator visits.  [caption id="attachment_21589" align="aligncenter" width="600"] Bumblebees also favour the teasels[/caption] The ‘attractiveness’ of the plants / flowers to pollinators was reduced, and it is possible that the smaller flowers were more difficult for relatively large pollinators (like the bumblebees) to ‘deal with’.  If pollen movement is reduced, then fewer fruits / seeds will be set and (insect pollinated) plant populations could decline.  The effects of reduced rainfall and water stress need to be considered alongside the declining number of pollinators.  The reduction in pollen movement has lead some to speculate that it might lead to a selective pressure for self-pollination / self-fertilisation, with plants dispensing with the need for visiting insects.  Other Woodlands blogs have reported on the falling numbers of insects / pollinators. Featured image : garlic mustard.
Woodland web updates 6.

Woodland web updates 6.

by The blog at woodlands.co.uk, 17 September, 2021, 0 comments

Pesticides problems. The effect of pesticides on bees and bumble bees is now well documented.  However, the combined effect of different pesticides is less well known.  If pesticide A is known to kill 10% of the bees in an area that has been treated, and pesticide B kills another 10% then it might be reasonable to assume that 20% of the bees would be killed - IF the effects are additive.  However, evidence is beginning to indicate that the effects of the pesticides is more than the sum of the parts - the pesticides work together / synergistically. Pesticide formulations that are sold to farmers are often ready mixed ‘cocktails’ so exposure to more than one pesticide is often the norm,  so it is important that these co-operative effects are understood and known. Honey bees have been affected by not only pesticides but also varroa.  Varroa is a mite, which lives and feeds on honeybees and their larvae.  Fortunately, bees have complex hygienic behaviours, for example, removing dead larvae or pupae.   Research indicates that honey bees are modifying this behaviour to deal with varroa mites. Helping pollinators Researchers at the University of Freiburg have recently published work establishing the importance of semi-natural habitat regions next to orchards and other agricultural landscapes for pollinators.  Such areas (ditches, banks, overgrown fences etc) help ensure that flowers (and therefore nectar and pollen) are available over a significant period of time.  This is important for pollinators such as hover flies, solitary bees, bumblebees etc. as nectar / pollen provided by crops is only available for a short and limited period.  Such areas are also important for overwintering, nesting sites, providing food for larval stages etc).  Their work focused on orchards near Lake Constance in Southern Germany. Soil remediation with lupins. There are many sites around the world where the soil is contaminated with metals (such as arsenic) as a result of past mining / industrial activities.  Such arsenic contaminated soil might be ‘revived’ by using the natural mechanisms that some plants have evolved to deal with certain contaminants.   The white lupin (Lupinus alba) is an arsenic-tolerant plant that might be a candidate for phytoremediation of soil.  The tolerance of the white lupin to arsenic is thought to be due to the release of chemicals by the roots into the soil.  Staff at the University de Montréal placed nylon pouches close to the roots to capture the molecule released.  The chemicals were then analysed to see which could bind to the arsenic (phytochelatins).  Phytochelatins are known to be used within plants to deal with metals but here they seem to be used externally.  Quite how they work is yet to be determined.

« Previous PageNext Page »